Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083436

RESUMO

Prefrontal control of cognitive functions critically depends upon glutamatergic transmission and N-methyl D-aspartate (NMDA) receptors, the activity of which is regulated by dopamine. Yet whether the NMDA receptor coagonist d-serine is implicated in the dopamine-glutamate dialogue in the prefrontal cortex (PFC) and other brain areas remains unexplored. Here, using electrophysiological recordings, we show that d-serine is required for the fine-tuning of glutamatergic neurotransmission, neuronal excitability, and synaptic plasticity in the PFC through the actions of dopamine at D1 and D3 receptors. Using in vivo microdialysis, we show that D1 and D3 receptors exert a respective facilitatory and inhibitory influence on extracellular levels and activity of d-serine in the PFC, with actions expressed primarily via the cAMP/protein kinase A (PKA) signaling cascade. Further, using functional magnetic resonance imaging (fMRI) and behavioral assessment, we show that d-serine is required for the potentiation of cognition by D3R blockade as revealed in a test of novel object recognition memory. Collectively, these results unveil a key role for d-serine in the dopaminergic neuromodulation of glutamatergic transmission and PFC activity, findings with clear relevance to the pathogenesis and treatment of diverse brain disorders involving alterations in dopamine-glutamate cross-talk.


Assuntos
Dopamina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Animais , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Knockout , Racemases e Epimerases/deficiência , Racemases e Epimerases/genética , Receptores Dopaminérgicos/metabolismo , Esquizofrenia , Transmissão Sináptica/efeitos dos fármacos
2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901735

RESUMO

For almost half a century, acute hippocampal slice preparations have been widely used to investigate anti-amnesic (or promnesic) properties of drug candidates on long-term potentiation (LTP)-a cellular substrate that supports some forms of learning and memory. The large variety of transgenic mice models now available makes the choice of the genetic background when designing experiments crucially important. Furthermore, different behavioral phenotypes were reported between inbred and outbred strains. Notably, some differences in memory performance were emphasized. Despite this, investigations, unfortunately, did not explore electrophysiological properties. In this study, two stimulation paradigms were used to compare LTP in the hippocampal CA1 area of both inbred (C57BL/6) and outbred (NMRI) mice. High-frequency stimulation (HFS) revealed no strain difference, whereas theta-burst stimulation (TBS) resulted in significantly reduced LTP magnitude in NMRI mice. Additionally, we demonstrated that this reduced LTP magnitude (exhibited by NMRI mice) was due to lower responsiveness to theta-frequency during conditioning stimuli. In this paper, we discuss the anatomo-functional correlates that may explain such hippocampal synaptic plasticity divergence, although straightforward evidence is still lacking. Overall, our results support the prime importance of considering the animal model related to the intended electrophysiological experiments and the scientific issues to be addressed.


Assuntos
Hipocampo , Plasticidade Neuronal , Camundongos , Animais , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Aprendizagem/fisiologia , Camundongos Endogâmicos , Camundongos Transgênicos , Estimulação Elétrica
3.
Cereb Cortex ; 31(1): 694-701, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32935845

RESUMO

The type 4 serotonin receptor (5-HT4R) is highly involved in cognitive processes such as learning and memory. Behavioral studies have shown a beneficial effect of its activation and conversely reported memory impairments by its blockade. However, how modulation of 5HT4R enables modifications of hippocampal synaptic plasticity remains elusive. To shed light on the mechanisms at work, we investigated the effects of the 5-HT4R agonist RS67333 on long-term potentiation (LTP) within the hippocampal CA1 area. Although high-frequency stimulation-induced LTP remained unaffected by RS67333, the magnitude of LTP induced by theta-burst stimulation was significantly decreased. This effect was blocked by the selective 5-HT4R antagonist RS39604. Further, 5-HT4R-induced decrease in LTP magnitude was fully abolished in the presence of bicuculline, a GABAAR antagonist; hence, demonstrating involvement of GABA neurotransmission. In addition, we showed that the application of a GABABR antagonist, CGP55845, mimicked the effect of 5-HT4R activation, whereas concurrent application of CGP55845 and RS67333 did not elicit an additive inhibition effect on LTP. To conclude, through investigation of theta burst induced functional plasticity, we demonstrated an interplay between 5-HT4R activation and GABAergic neurotransmission within the hippocampal CA1 area.


Assuntos
Região CA1 Hipocampal/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Receptores 5-HT4 de Serotonina/metabolismo , Animais , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiologia , Masculino , Camundongos
4.
Psychopharmacology (Berl) ; 234(15): 2365-2374, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28631100

RESUMO

AIM: It is widely assumed that the upcoming therapeutics for Alzheimer's disease will require to act on more than one target to be effective. We investigated here whether a combination of the nicotinic receptor allosteric modulator/cholinesterase inhibitor galantamine can act synergistically with the type 4 serotonin receptor (5-HT4R) partial agonist, RS-67333, to counterbalance deficits in short- and long-term memory. To select sub-efficacious doses of both drugs, dose-response studies were first performed on the scopolamine-induced deficits of spontaneous alternation in the Y-maze task and of acquisition and retrieval processes in a passive avoidance task. RESULT: For spontaneous alternation behavior, combination of 1 mg/kg galantamine and 0.5 mg/kg RS-67333 fully reversed the deficit. In the passive avoidance task, no sub-efficacious doses could be found in the retention paradigm, but a beneficial effect of the association has been demonstrated in the acquisition paradigm. CONCLUSION: Mnesic effects of galantamine can be thus potentiated by activation of 5-HT4R. Such a combination treatment might (1) strengthen symptomatic relief, (2) attenuate adverse effects given the lower doses of each compound required, and (3) afford a disease-modifying effect given the known action of 5-HT4R on amyloidogenesis cascade.


Assuntos
Inibidores da Colinesterase/administração & dosagem , Galantamina/administração & dosagem , Transtornos da Memória/induzido quimicamente , Antagonistas Nicotínicos/administração & dosagem , Escopolamina/toxicidade , Agonistas do Receptor 5-HT4 de Serotonina/administração & dosagem , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Doença de Alzheimer/tratamento farmacológico , Compostos de Anilina/administração & dosagem , Animais , Masculino , Transtornos da Memória/tratamento farmacológico , Camundongos , Piperidinas/administração & dosagem , Receptores Nicotínicos/fisiologia , Receptores 5-HT4 de Serotonina/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa