Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 47(4): 790-793, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35167526

RESUMO

In this Letter, we introduce a noise reduction (NR) strategy in the off-axis camera-in-the-loop (CITL) optimization for high-quality hologram generation. Our proposal adopts the Gaussian blur in the NR strategy to suppress the high-frequency noise and improve the optimization convergence. A double-hologram generation technique is used to reduce the noise further. The off-axis system's aberrations are eliminated by integrating the aberration compensation method as well. Compared with the original CITL method, the image quality of the proposed method is improved by approximately 5.5 dB in the optical experiment.

2.
Opt Express ; 29(10): 15089-15103, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985216

RESUMO

The stochastic gradient descent (SGD) method is useful in the phase-only hologram optimization process and can achieve a high-quality holographic display. However, for the current SGD solution in multi-depth hologram generation, the optimization time increases dramatically as the number of depth layers of object increases, leading to the SGD method nearly impractical in hologram generation of the complicated three-dimensional object. In this paper, the proposed method uses a complex loss function instead of an amplitude-only loss function in the SGD optimization process. This substitution ensures that the total loss function can be obtained through only one calculation, and the optimization time can be reduced hugely. Moreover, since both the amplitude and phase parts of the object are optimized, the proposed method can obtain a relatively accurate complex amplitude distribution. The defocus blur effect is therefore matched with the result from the complex amplitude reconstruction. Numerical simulations and optical experiments have validated the effectiveness of the proposed method.

3.
Opt Lett ; 46(17): 4212-4215, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469980

RESUMO

We introduce a projection-type light field display featuring effective light modulation. By combining a tomographic display with integral imaging (InIm) technology, a novel optical design is capable of an autostereoscopic light field projector. Here, the tomographic approach generates a high-resolution volumetric scene, and InIm makes it possible for the volumetric scene to be reconstructed on a large screen through a projection. Since all the processes are realized optically without digital processing, our system can overcome the performance limitations associated with the number of pixels in the conventional InIm displays. We built a prototype display and demonstrated that our optical design has the potential of massive resolution with a full-parallax in a single device.

4.
Appl Opt ; 60(4): A268-A276, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690378

RESUMO

We introduce an approach to expand the eye-box in a retinal-projection-based near-eye display. The retinal projection display has the advantage of providing clear images in a wide depth range; however, it has difficulty in practical use with a narrow eye-box. Here, we propose a method to enhance the eye-box of the retinal projection display by generating multiple independent viewpoints, maintaining a wide depth of field. The method prevents images projected from multiple viewpoints from overlapping one other in the retina. As a result, our proposed system can provide a continuous image over a wide viewing angle without an eye tracker or image update. We discuss the optical design for the proposed method and verify its feasibility through simulation and experiment.


Assuntos
Imageamento Tridimensional/instrumentação , Retina/diagnóstico por imagem , Telefone Celular/instrumentação , Simulação por Computador , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional/métodos , Dispositivos Ópticos
5.
Opt Express ; 28(18): 27137-27154, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906972

RESUMO

We present a deep neural network for generating a multi-depth hologram and its training strategy. The proposed network takes multiple images of different depths as inputs and calculates the complex hologram as an output, which reconstructs each input image at the corresponding depth. We design a structure of the proposed network and develop the dataset compositing method to train the network effectively. The dataset consists of multiple input intensity profiles and their propagated holograms. Rather than simply training random speckle images and their propagated holograms, we generate the training dataset by adjusting the density of the random dots or combining basic shapes to the dataset such as a circle. The proposed dataset composition method improves the quality of reconstructed images by the holograms generated by the network, called deep learning holograms (DLHs). To verify the proposed method, we numerically and optically reconstruct the DLHs. The results confirmed that the DLHs can reconstruct clear images at multiple depths similar to conventional multi-depth computer-generated holograms. To evaluate the performance of the DLH quantitatively, we compute the peak signal-to-noise ratio of the reconstructed images and analyze the reconstructed intensity patterns with various methods.

6.
Opt Express ; 28(21): 30836-30850, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115076

RESUMO

We present a full-color holographic augmented reality near-eye display using a Pancharatnam-Berry phase lens (PBP lens) and its aberration correction method. Monochromatic and chromatic aberrations of the PBP lens are corrected by utilizing complex wavefront modulation of the holographic display. A hologram calculation method incorporating the phase profile of the PBP lens is proposed to correct the monochromatic aberration. Moreover, the chromatic aberration is corrected by warping the image using the mapping function obtained from ray tracing. The proposed system is demonstrated with the benchtop prototype, and the experimental results show that the proposed system offers 50° field of view full-color holographic images without optical aberrations.

7.
Opt Lett ; 45(8): 2148-2151, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287178

RESUMO

We propose a digital micromirror device (DMD) holographic display, where speckleless holograms can be observed in the expanded viewing zone. Structured illumination (SI) is applied to expand the small diffraction angle of the DMD using a laser diode (LD) array. To eliminate diffraction noise from SI, we utilize an active filter array for the Fourier filter and synchronize it with the LD array. The speckle noise is reduced via temporal multiplexing, where the proposed system supports a dynamic video of 60 Hz using the DMD's fast operation property. The proposed system is verified and evaluated with experimental results.

8.
Opt Express ; 27(26): 38006-38018, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878572

RESUMO

We propose a customizing method of a holographic optical element (HOE) by using a holographic printer, which extends the eye-box with high field of view (FOV) for a holographic augmented reality near-eye display (AR NED). The holographic printer setup to manufacture HOE is presented and a prototype of the AR NED is implemented. To make a simple AR NED system, we propose a total internal reflection holographic printing method using an index-matching optical frame. As a result, the eye-box of the AR NED is extended in both vertical and horizontal directions and FOV of 50° is achieved at the center of the eye-box. Through the simulations and the experimental results, the feasibility of the proposed method is verified.

9.
Sci Rep ; 12(1): 2811, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181695

RESUMO

Holography is a promising approach to implement the three-dimensional (3D) projection beyond the present two-dimensional technology. True 3D holography requires abilities of arbitrary 3D volume projection with high-axial resolution and independent control of all 3D voxels. However, it has been challenging to implement the true 3D holography with high-reconstruction quality due to the speckle. Here, we propose the practical solution to realize speckle-free, high-contrast, true 3D holography by combining random-phase, temporal multiplexing, binary holography, and binary optimization. We adopt the random phase for the true 3D implementation to achieve the maximum axial resolution with fully independent control of the 3D voxels. We develop the high-performance binary hologram optimization framework to minimize the binary quantization noise, which provides accurate and high-contrast reconstructions for 2D as well as 3D cases. Utilizing the fast operation of binary modulation, the full-color high-framerate holographic video projection is realized while the speckle noise of random phase is overcome by temporal multiplexing. Our high-quality true 3D holography is experimentally verified by projecting multiple arbitrary dense images simultaneously. The proposed method can be adopted in various applications of holography, where we show additional demonstration that realistic true 3D hologram in VR and AR near-eye displays. The realization will open a new path towards the next generation of holography.

10.
Sci Rep ; 12(1): 6649, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459871

RESUMO

Holographic display is considered as the most promising three-dimensional (3D) display due to its unique feature of reconstructing arbitrary wavefronts. However, the limited étendue, which hinders the immersive experience of observers, remains a major unresolved issue in holographic display technique. In this paper, we propose a novel approach to tweak the constraints of étendue by expanding the energy envelope in holographic display via mutually coherent multi-illumination. The proposed concept contains both a light source design for generating a mutually coherent multi-directional wave and a computer-generated hologram optimization framework for providing high-resolution 3D holograms. To verify the proposed approach, a benchtop prototype of a holographic near-eye display providing an intrinsic large exit-pupil is implemented. The experimental results clearly show that the exit-pupil is effectively expanded by four times and an appropriate viewpoint image is reconstructed according to the view position.

11.
Biomed Opt Express ; 12(8): 5179-5195, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34513250

RESUMO

Vision-correcting displays are key to achieving physical and physiological comforts to the users with refractive errors. Among such displays are holographic displays, which can provide a high-resolution vision-adaptive solution with complex wavefront modulation. However, none of the existing hologram rendering techniques have considered the optical properties of the human eye nor evaluated the significance of vision correction. Here, we introduce vision-correcting holographic display and hologram acquisition that integrates user-dependent prescriptions and a physical model of the optics, enabling the correction of on-axis and off-axis aberrations. Experimental and empirical evaluations of the vision-correcting holographic displays show the competence of holographic corrections over the conventional vision correction solutions.

12.
Sci Rep ; 10(1): 18832, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139826

RESUMO

Speckle reduction is an important topic in holographic displays as speckles not only reduce signal-to-noise ratio but also possess an eye-safety issue. Despite thorough exploration of speckle reduction methods using partially coherent light sources, the trade-off involved by the partial coherence has not been thoroughly discussed. Here, we introduce theoretical models that quantify the effects of partial coherence on the resolution and the speckle contrast. The theoretical models allow us to find an optimal light source that maximizes the speckle reduction while minimizing the decline of the other terms. We implement benchtop prototypes of partially coherent holographic displays using the optimal light source, and verify the theoretical models via simulation and experiment. We also present a criterion to evaluate the depth of field in partially coherent holographic displays. We conclude with a discussion about approximations and limitations inherent in the theoretical models.

13.
Sci Rep ; 7(1): 2753, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28584247

RESUMO

A novel see-through optical device to combine the real world and the virtual image is proposed which is called an index-matched anisotropic crystal lens (IMACL). The convex lens made of anisotropic crystal is enveloped with the isotropic material having same refractive index with the extraordinary refractive index of the anisotropic crystal. This optical device functions as the transparent glass or lens according to the polarization state of the incident light. With the novel optical property, IMACL can be utilized in the see-through near eye display, or head-mounted display for augmented reality. The optical property of the proposed optical device is analyzed and aberration by the anisotropic property of the index-matched anisotropic crystal lens is described with the simulation. The concept of the head-mounted display using IMACL is introduced and various optical performances such as field of view, form factor and transmittance are analyzed. The prototype is implemented to verify the proposed system and experimental results show the mixture between the virtual image and real world scene.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa