Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Biochem Biophys Res Commun ; 653: 76-82, 2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-36857903

RESUMO

FK506-sensitive proline rotamase 1 protein (Fpr1p), which is a homologue of the mammalian prolyl isomerase FK506-binding protein of 12 kDa (FKBP12), is known to play important roles in protein folding and prevention of protein aggregation. Although rapamycin is known to bind to Fpr1p to inhibit Tor1p mediated-mechanistic Target Of Rapamycin (mTOR) activity, the physiological functions of Fpr1p on lifespan remain unclear. In this study, we used the eukaryotic model Saccharomyces cerevisiae to demonstrate that deletion of FPR1 reduced yeast chronological lifespan (CLS), and there was no benefit on lifespan upon rapamycin treatment, indicating that lifespan extension mechanism of rapamycin in yeast is exclusively dependent on FPR1. Furthermore, there was a significant increase in CLS of fpr1Δ cells during caloric restriction (CR), suggesting that rapamycin affects lifespan in a different way compared to CR. This study highlights the importance of FPR1 for rapamycin-induced lifespan extension.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sirolimo/farmacologia , Longevidade , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Peptidilprolil Isomerase/metabolismo , Tacrolimo/metabolismo
2.
Mol Genet Genomics ; 291(2): 831-47, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26606930

RESUMO

Caloric restriction (CR) has been shown to extend the lifespan of many species by improving cellular function and organismal health. Additionally, fat reduction by CR may play an important role in lengthening lifespan and preventing severe age-related diseases. Interestingly, CR induced the greatest transcriptome change in the epididymal fat of mice in our study. In this transcriptome analysis, we identified and categorized 446 genes that correlated with CR level. We observed down-regulation of several signaling pathways, including insulin/insulin-like growth factor 1 (insulin/IGF-1), epidermal growth factor (EGF), transforming growth factor beta (TGF-ß), and canonical wingless-type mouse mammary tumor virus integration site (Wnt). Many genes related to structural features, including extracellular matrix structure, cell adhesion, and the cytoskeleton, were down-regulated, with a strong correlation to the degree of CR. Furthermore, genes related to the cell cycle and adipogenesis were down-regulated. These biological processes are well-identified targets of insulin/IGF-1, EGF, TGF-ß, and Wnt signaling. In contrast, genes involved in specific metabolic processes, including the tricarboxylic acid cycle and the electron transport chain were up-regulated. We performed in silico analysis of the promoter sequences of CR-responsive genes and identified two associated transcription factors, Paired-like homeodomain 2 (Pitx2) and Paired box gene 6 (Pax6). Our results suggest that strict regulation of signaling pathways is critical for creating the optimal energy homeostasis to extend lifespan.


Assuntos
Restrição Calórica , Perfilação da Expressão Gênica/métodos , Longevidade/genética , Transcriptoma/genética , Tecido Adiposo/metabolismo , Animais , Fator de Crescimento Epidérmico/biossíntese , Proteínas do Olho/biossíntese , Regulação da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Fígado/metabolismo , Camundongos , Oxirredução , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/biossíntese , Proteínas Repressoras/biossíntese , Fatores de Transcrição/biossíntese , Fator de Crescimento Transformador beta/biossíntese , Via de Sinalização Wnt , Proteína Homeobox PITX2
3.
Adv Biol (Weinh) ; : e2400083, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717792

RESUMO

The regulation of complex energy metabolism is intricately linked to cellular energy demands. Caloric restriction (CR) plays a pivotal role in modulating the expression of genes associated with key metabolic pathways, including glycolysis, the tricarboxylic acid (TCA) cycle, and the glyoxylate cycle. In this study, the chronological lifespan (CLS) of 35 viable single-gene deletion mutants under both non-restricted and CR conditions, focusing on genes related to these metabolic pathways is evaluated. CR is found to increase CLS predominantly in mutants associated with the glycolysis and TCA cycle. However, this beneficial effect of CR is not observed in mutants of the glyoxylate cycle, particularly those lacking genes for critical enzymes like isocitrate lyase 1 (icl1Δ) and malate synthase 1 (mls1Δ). This analysis revealed an increase in isocitrate lyase activity, a key enzyme of the glyoxylate cycle, under CR, unlike the activity of isocitrate dehydrogenase, which remains unchanged and is specific to the TCA cycle. Interestingly, rapamycin, a compound known for extending lifespan, does not increase the activity of the glyoxylate cycle enzyme. This suggests that CR affects lifespan through a distinct metabolic mechanism.

4.
Aging Dis ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38913048

RESUMO

Astrocytes play a crucial role in maintaining brain homeostasis by regulating synaptic activity, providing metabolic support to neurons, and modulating immune responses in the central nervous system (CNS). During aging, astrocytes undergo senescence with various changes that affect their function and frequently lead to neurodegeneration. This study presents the first evidence of senescent astrocytes derived from human pluripotent stem cells (hPSCs). These senescent hPSC-derived astrocytes exhibited altered cellular and nuclear morphologies, along with increased expression of senescence-associated markers. Additionally, nuclear localization of NFκB, telomere shortening, and frequent signs of DNA damage were observed in these cells. Furthermore, senescent astrocytes showed defects in various critical functions necessary for maintaining a healthy CNS environment, including a reduced ability to support neuronal survival and clear neurotransmitters, synaptic debris, and toxic protein aggregates. Altered structural dynamics and reduced mitochondrial function were also observed in senescent astrocytes. Notably, treating hPSC-derived senescent astrocytes with chemicals targeting reactive oxygen species or an enzyme that regulates mitochondrial function can reverse senescence phenotypes. Thus, this study offers a valuable cellular model that can be utilized to investigate the mechanisms of brain aging and may present new avenues for discovering innovative therapeutic approaches for neurodegenerative diseases.

5.
Biochem Biophys Res Commun ; 439(1): 126-31, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23942118

RESUMO

The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeast by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA.


Assuntos
Trifosfato de Adenosina/química , DNA/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Meios de Cultura , Transporte de Elétrons , Metabolismo Energético , Citometria de Fluxo , Potencial da Membrana Mitocondrial , Estresse Oxidativo , Saccharomyces cerevisiae/genética , Superóxidos/metabolismo , Fatores de Tempo
6.
Biochem Biophys Res Commun ; 441(1): 236-42, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24141116

RESUMO

Caloric restriction mimetics (CRMs) have been developed to mimic the effects of caloric restriction (CR). However, research reports for the effects of CRMs are often times inconsistent across different research groups. Therefore, in this study, we compared seven identified CRMs which extend the lifespans of various organisms including caffeine, curcumin, dapsone, metformin, rapamycin, resveratrol, and spermidine to CR for mitochondrial function in a single model, Saccharomyces cerevisiae. In this organism, rapamycin extended chronological lifespan (CLS), but other CRMs failed to extend CLS. Rapamycin enhanced mitochondrial function like CR did, but other CRMs did not. Both CR and rapamycin worked on mitochondrial function, but they worked at different windows of time during the chronological aging process.


Assuntos
Restrição Calórica , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Metabolismo Energético/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Sirolimo/farmacologia , Fatores de Tempo
7.
Nat Genet ; 36(8): 900-5, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15247917

RESUMO

The identification of nuclease-hypersensitive sites in an active globin gene and in the 5' regions of fruit fly heat shock genes first suggested that chromatin changes accompany gene regulation in vivo. Here we present evidence that the basic repeating units of eukaryotic chromatin, nucleosomes, are depleted from active regulatory elements throughout the Saccharomyces cerevisiae genome in vivo. We found that during rapid mitotic growth, the level of nucleosome occupancy is inversely proportional to the transcriptional initiation rate at the promoter. We also observed a partial loss of histone H3 and H4 tetramers from the coding regions of the most heavily transcribed genes. Alterations in the global transcriptional program caused by heat shock or a change in carbon source resulted in an increased nucleosome occupancy at repressed promoters, and a decreased nucleosome occupancy at promoters that became active. Nuclease-hypersensitive sites occur in species from yeast to humans and result from chromatin perturbation. Given the conservation of sequence and function among components of both chromatin and the transcriptional machinery, nucleosome depletion at promoters may be a fundamental feature of eukaryotic transcriptional regulation.


Assuntos
Genes Fúngicos , Nucleossomos/fisiologia , Sequências Reguladoras de Ácido Nucleico , Saccharomyces cerevisiae/genética , Histonas/fisiologia , Transcrição Gênica
8.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37765029

RESUMO

Olfactory receptors are expressed in multiple extra-nasal tissues and these ectopic olfactory receptors mediate tissue-specific functions and regulate cellular physiology. Ectopic olfactory receptors may play key roles in tissues constantly exposed to odorants, thus the functionality of these receptors in genital tissues is of particular interest. The functionality of ectopic olfactory receptors expressed in VK2/E6E7 human vaginal epithelial cells was investigated. OR2H2 was the most highly expressed olfactory receptor expressed in VK2/E6E7 cells, and activation of OR2H2 by aldehyde 13-13, a ligand of OR2H2, increased the intracellular calcium and cAMP concentrations. Immunoblotting demonstrated that activation of OR2H2 by aldehyde 13-13 stimulated the CAMKKß-AMPK-mTORC1-autophagy signaling axis, and that these effects were negated by OR2H2 knockdown. AMPK is known to regulate senescence; consequently, we investigated further the effect of aldehyde 13-13 on senescence. In H2O2-induced senescent cells, activation of OR2H2 by aldehyde 13-13 restored proliferation, and reduced the expression of senescence markers, P16 and P19. Additionally, aldehyde 13-13 induced apoptosis of H2O2-induced senescent cells, compared with non-senescent normal cells. In vivo, aldehyde 13-13 increased the lifespan of Caenorhabditis elegans and budding yeast. These findings demonstrate that OR2H2 is a functional receptor in VK2/E6E7 cells, and that activation of OR2H2 activates the AMPK-autophagy axis, and suppresses cellular aging and senescence, which may increase cellular health.

9.
World J Mens Health ; 40(2): 316-329, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35021315

RESUMO

PURPOSE: To build an age prediction model, we measured CD4+ and CD8+ cells, and humoral components in canine peripheral blood. MATERIALS AND METHODS: Large Belgian Malinois (BGM) and German Shepherd Dog (GSD) breeds (n=27), aged from 1 to 12 years, were used for this study. Peripheral bloods were obtained by venepuncture, then plasma and peripheral blood mononuclear cells (PBMCs) were separated immediately. Six myokines, including interleukin (IL)-6, IL-8, IL-15, leukemia inhibitory factor (LIF), growth differentiation factor 8 (GDF8), and GDF11 were measured from plasma and CD4+/CD8+ T-lymphocytes ratio were measured from PBMC. These parameters were then tested with age prediction models to find the best fit model. RESULTS: We found that the T-lymphocyte ratio (CD4+/CD8+) was significantly correlated with age (r=0.46, p=0.016). Among the six myokines, only GDF8 showed a significant correlation with age (r=0.52, p=0.005). Interestingly, these two markers showed better correlations in male dogs than females, and BGM breed than GSD. Using these two age biomarkers, we could obtain the best fit in a quadratic linear mixed model (r=0.77, p=3×10-6). CONCLUSIONS: Age prediction is a challenging task because of complication with biological age. Our quadratic linear mixed model using CD4+/CD8+ ratio and GDF8 level showed a meaningful age prediction.

10.
Biochem Biophys Res Commun ; 409(2): 308-14, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21575595

RESUMO

Caloric restriction (CR) is known to extend lifespan in a variety of species; however, the mechanism remains unclear. In this study, we found that CR potentiated the mitochondrial electron transport chain (ETC) at both the transcriptional and translational levels. Indeed, mitochondrial membrane potential (MMP) was increased by CR, and, regardless of ages, overall reactive oxygen species (ROS) generation was decreased by CR. With these changes, overall growth rate of cells was maintained under various CR conditions, just like cells under a non-restricted condition. All of these data support increased efficiency and capacity of the ETC by CR, and this change might lead to extension of lifespan.


Assuntos
Restrição Calórica , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Longevidade , Mitocôndrias/fisiologia , Saccharomyces cerevisiae/fisiologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Potencial da Membrana Mitocondrial , Mitocôndrias/enzimologia , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica
11.
Biosci Biotechnol Biochem ; 75(3): 451-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21389631

RESUMO

There are phenotypic differences between Korean native pig (KNP) and Yorkshire (YS) breeds due to different interests in selection. YS has been selected for industrial interests such as a growth rate and lean meat production, while KNP has been maintained as a regional breed with local interests such as disease resistance and fat content in and between muscle. A comparison of gene expression profiles from liver tissue reflected overall long-term effects of artificial selection for these two pig breeds. Based on minimum positive false discovery rate (less than 10%) and fold change (|FC|>1.5), 73 differentially expressed genes (DEGs) were identified. Functional analysis of these DEGs indicated clear distinctions in signaling capacity related to epidermal growth factor (EGF), extracellular structure, protein metabolism, and detoxification. Hepatic DEGs demonstrated the importance of hormonal and metabolic capabilities to differences between these two pig breeds.


Assuntos
Perfilação da Expressão Gênica , Fígado/metabolismo , RNA Mensageiro/análise , Sus scrofa , Animais , Biomarcadores/análise , Distribuição da Gordura Corporal , Cruzamento , Hibridização Genômica Comparativa , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Europa (Continente) , Humanos , Coreia (Geográfico) , Carne , Músculo Esquelético/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Filogenia , Especificidade da Espécie , Sus scrofa/genética , Sus scrofa/metabolismo
12.
Planta Med ; 77(13): 1512-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21425034

RESUMO

Oxypeucedanin is a major coumarin aglycone that can be extracted from Ostericum koreanum. Coumarin aglycones have demonstrated various pharmacological effects, including anti-proliferation, anti-inflammation, and anti-pain. In this study, in order to understand the pharmacological properties of oxypeucedanin, we investigated global gene expression alteration in mouse neuroblastoma Neuro-2A cells. Results from the MTT assay indicated no decrease of cell viability up to 100 µM for 24 h. We measured gene expression profiles in Neuro-2A cells treated with either 10 µM or no oxypeucedanin for 24 h. We selected 128 differentially expressed genes (DEGs) for comparison of gene expression profiles by Bonferroni-adjusted p values (p < 0.1). Analysis of Gene Ontology (GO) biological process terms using the DEGs demonstrated the importance of protein metabolism, particularly ribosomal protein synthesis and protein degradation, intramembrane protein trafficking, and electron transport. Treatment with oxypeucedanin resulted in the downregulation of most DEGs for ribosomal protein synthesis and the electron transport chain (ETC). In contrast, most DEGs for protein degradation and cellular trafficking systems were upregulated. In addition, we found five upregulated DEGs for core and regulatory proteins involved in the mitogen-activated protein kinase (MAPK) signaling pathway. Independent translational validation of DEGs for MAPK signaling by immunoblot analysis showed consistent agreement with microarray data. Overall protein levels of Erk2 and p38MAPK were elevated, and their phosphorylated forms were also increased. These functional categories, based on transcriptional alteration and complicated modulation of MAPK signaling, might be underlying mechanisms responsible for the various pharmacological effects of oxypeucedanin.


Assuntos
Apiaceae/química , Furocumarinas/farmacologia , Regulação da Expressão Gênica/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/genética , Furocumarinas/isolamento & purificação , Perfilação da Expressão Gênica , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Raízes de Plantas/química , Mapeamento de Interação de Proteínas , Regulação para Cima/genética
13.
Exp Mol Med ; 53(6): 1092-1108, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34188179

RESUMO

Senescent cells exhibit a reduced response to intrinsic and extrinsic stimuli. This diminished reaction may be explained by the disrupted transmission of nuclear signals. However, this hypothesis requires more evidence before it can be accepted as a mechanism of cellular senescence. A proteomic analysis of the cytoplasmic and nuclear fractions obtained from young and senescent cells revealed disruption of nucleocytoplasmic trafficking (NCT) as an essential feature of replicative senescence (RS) at the global level. Blocking NCT either chemically or genetically induced the acquisition of an RS-like senescence phenotype, named nuclear barrier-induced senescence (NBIS). A transcriptome analysis revealed that, among various types of cellular senescence, NBIS exhibited a gene expression pattern most similar to that of RS. Core proteomic and transcriptomic patterns common to both RS and NBIS included upregulation of the endocytosis-lysosome network and downregulation of NCT in senescent cells, patterns also observed in an aging yeast model. These results imply coordinated aging-dependent reduction in the transmission of extrinsic signals to the nucleus and in the nucleus-to-cytoplasm supply of proteins/RNAs. We further showed that the aging-associated decrease in Sp1 transcription factor expression was critical for the downregulation of NCT. Our results suggest that NBIS is a modality of cellular senescence that may represent the nature of physiological aging in eukaryotes.


Assuntos
Senescência Celular , Proteômica , Núcleo Celular/metabolismo , Senescência Celular/genética , Regulação para Baixo
14.
Mol Biol Rep ; 37(8): 3931-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20300864

RESUMO

Porcine chromosome 6 (SSC6) has been reported to have QTL affecting intramuscular fat content (IMF) in multiple populations. The objective of this study was to investigate the effect of FABP3 and LEPR genetic variations as well as their mRNA expression on the IMF trait in a three-generation of Korean native pig and Yorkshire crossed animals. Several polymorphisms of the FABP3 (HinfI, HaeIII and HinfI*) were significantly associated with moisture, tenderness and flavor score (P < 0.05), and were used to construct haplotypes: haplotype 1 (-TCT-) increased the marbling and intramuscular fat content, however, haplotype 2 (-CCT-) decreased tenderness. The LEPR AvaII polymorphism showed significant association with moisture, intramuscular fat, cholesterol and flavor score (P < 0.05). The linkage analyses with six microsatellites mapped FABP3 gene in the interval between the markers Sw1129 and S0228 (Sw1129--11.7 cM--FABP3-9.1 cM--S0228), and the LEPR gene between the markers S0121 and Sw322 (S0121--7.5 cM--LEPR--28.5 cM--Sw322). QTL mapping suggested a significant QTL affecting Moisture (83 cM) and IMF (84 cM) located close to marker S0228. The gene expression results showed that in the loin muscle, both of the FABP3 and LEPR genes showed significantly higher expression in pigs with higher IMF%, however, in the backfat, only FABP3 showed differential expression between these two groups of pigs (significantly higher expression in pigs with lower IMF%) (P < 0.05). In the liver, both of these two genes did not show any difference between the high and low IMF% groups.


Assuntos
Tecido Adiposo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Variação Genética , Músculos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Receptores para Leptina/genética , Sus scrofa/genética , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Haplótipos/genética , Masculino , Fenótipo , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , RNA Mensageiro/genética , Receptores para Leptina/metabolismo , República da Coreia , Análise de Sequência de DNA
15.
Ann Geriatr Med Res ; 24(4): 232-242, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33389971

RESUMO

Caloric restriction (CR) has been shown to extend the lifespan of many species. Research to identify compounds that imitate the results of CR has shown extensions of both lifespan and healthspan via different mechanisms. For example, mechanistic target of rapamycin (mTOR) inhibitors such as rapamycin, phenols, and flavonoids show antioxidant characteristics, while spermidine induces autophagy. Herein, we summarize research progress and proposed mechanisms for the most well-known compounds showing lifespan-extending potential for anti-aging characteristics.

16.
J Gerontol A Biol Sci Med Sci ; 75(8): 1448-1456, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-31541249

RESUMO

Budding yeast generate heterogeneous cells that can be separated into two distinctive cell types: short-living low-density and long-living high-density (HD) cells by density gradient centrifugation. We found that ethanol and acetate induce formation of HD cells, and mitochondrial respiration is required. From their transcriptomes and metabolomes, we found upregulated differentially expressed genes in HD cells involved in the RGT2/RGT1 glucose sensing pathway and its downstream genes encoding hexose transporters. For HD cells, we determined an abundance of various carbon sources including glucose, lactate, pyruvate, trehalose, mannitol, mannose, and galactose. Other upregulated differentially expressed genes in HD cells were involved in the TORC1-SCH9 signaling pathway and its downstream genes involved in cytoplasmic translation. We also measured an abundance of free amino acids in HD cells including valine, proline, isoleucine, and glutamine. These characteristics of the HD cell transcriptome and metabolome may be important conditions for maintaining a long-living phenotype.


Assuntos
Acetatos/farmacologia , Respiração Celular , Etanol/farmacologia , Longevidade , Saccharomyces cerevisiae/citologia , Senescência Celular , DNA Mitocondrial/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Potencial da Membrana Mitocondrial , Metaboloma , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo
17.
PLoS Genet ; 2(9): e158, 2006 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-17002501

RESUMO

The packaging of DNA into nucleosomes influences the accessibility of underlying regulatory information. Nucleosome occupancy and positioning are best characterized in the budding yeast Saccharomyces cerevisiae, albeit in asynchronous cell populations or on individual promoters such as PHO5 and GAL1-10. Using FAIRE (formaldehyde-assisted isolation of regulatory elements) and whole-genome microarrays, we examined changes in nucleosome occupancy throughout the mitotic cell cycle in synchronized populations of S. cerevisiae. Perhaps surprisingly, nucleosome occupancy did not exhibit large, global variation between cell cycle phases. However, nucleosome occupancy at the promoters of cell cycle-regulated genes was reduced specifically at the cell cycle phase in which that gene exhibited peak expression, with the notable exception of S-phase genes. We present data that establish FAIRE as a high-throughput method for assaying nucleosome occupancy. For the first time in any system, nucleosome occupancy was mapped genome-wide throughout the cell cycle. Fluctuation of nucleosome occupancy at promoters of most cell cycle-regulated genes provides independent evidence that periodic expression of these genes is controlled mainly at the level of transcription. The promoters of G2/M genes are distinguished from other cell cycle promoters by an unusually low baseline nucleosome occupancy throughout the cell cycle. This observation, coupled with the maintenance throughout the cell cycle of the stereotypic nucleosome occupancy states between coding and non-coding loci, suggests that the largest component of variation in nucleosome occupancy is "hard wired," perhaps at the level of DNA sequence.


Assuntos
Ciclo Celular/fisiologia , Genes Fúngicos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Moléculas de Adesão Celular/genética , Ciclina B/metabolismo , Ciclinas/metabolismo , Fase G1 , Fase G2 , Histonas/metabolismo , Lipoproteínas/metabolismo , Análise em Microsséries , Mitose , Dados de Sequência Molecular , Mutação/genética , Feromônios , Fase S , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
BMB Rep ; 52(1): 70-85, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30545442

RESUMO

Reduction of insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) extends the lifespan of various species. So far, several longevity mouse models have been developed containing mutations related to growth signaling deficiency by targeting growth hormone (GH), IGF1, IGF1 receptor, insulin receptor, and insulin receptor substrate. In addition, p70 ribosomal protein S6 kinase 1 (S6K1) knockout leads to lifespan extension. S6K1 encodes an important kinase in the regulation of cell growth. S6K1 is regulated by mechanistic target of rapamycin (mTOR) complex 1. The v-myc myelocytomatosis viral oncogene homolog (MYC)-deficient mice also exhibits a longevity phenotype. The gene expression profiles of these mice models have been measured to identify their longevity mechanisms. Here, we summarize our knowledge of long-lived mouse models related to growth and discuss phenotypic characteristics, including organ-specific gene expression patterns. [BMB Reports 2019; 52(1): 70-85].


Assuntos
Hormônio do Crescimento/fisiologia , Longevidade/fisiologia , Animais , Proliferação de Células , Modelos Animais de Doenças , Expressão Gênica , Proteínas Substratos do Receptor de Insulina , Fator de Crescimento Insulin-Like I/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Modelos Animais , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Receptor IGF Tipo 1 , Receptor de Insulina , Proteínas Quinases S6 Ribossômicas 70-kDa , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR , Transcriptoma/fisiologia
19.
Aging (Albany NY) ; 11(12): 4254-4273, 2019 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-31254461

RESUMO

Endogenously produced hydrogen sulfide was proposed to be an underlying mechanism of lifespan extension via methionine restriction. However, hydrogen sulfide regulation and its beneficial effects via methionine restriction remain elusive. Here, we identified the genes required to increase hydrogen sulfide production under methionine restriction condition using genome-wide high-throughput screening in yeast strains with single-gene deletions. Sulfate assimilation-related genes, such as MET1, MET3, MET5, and MET10, were found to be particularly crucial for hydrogen sulfide production. Interestingly, methionine restriction failed to increase hydrogen sulfide production in mutant strains; however, it successfully extended chronological lifespan and reduced reactive oxygen species levels. Altogether, our observations suggested that increased hydrogen sulfide production via methionine restriction is not the mechanism underlying extended yeast lifespan, even though increased hydrogen sulfide production occurred simultaneously with yeast lifespan extension under methionine restriction condition.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Metionina/administração & dosagem , Saccharomyces cerevisiae/fisiologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Metionina/metabolismo , Espécies Reativas de Oxigênio , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfatos/metabolismo
20.
Mol Cells ; 26(3): 299-307, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18679056

RESUMO

To characterize gene expression that is dependent on the strength of calorie restriction (CR), we obtained transcriptome at different levels of glucose, which is a major energy and carbon source for budding yeast. To faithfully mimic mammalian CR in yeast culture, we reconstituted and grew seeding yeast cells in fresh 2% YPD media before inoculating into 2%, 1%, 0.5% and 0.25% YPD media to reflect different CR strengths. We collected and characterized 160 genes that responded to CR strength based on the rigorous statistical analyses of multiple test corrected ANOVA (adjusted p0.7). Based on the individual gene studies and the GO Term Finder analysis of 160 genes, we found that CR dose-dependently and gradually increased mitochondrial function at the transcriptional level. Therefore, we suggest these 160 genes are markers that respond to CR strength and that might be useful in elucidating CR mechanisms, especially how stronger CR extends life span more.


Assuntos
Restrição Calórica , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/fisiologia , Transcrição Gênica , Animais , Transporte de Elétrons/fisiologia , Perfilação da Expressão Gênica , Glucose/metabolismo , Humanos , Íons/metabolismo , Nucleotídeos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa