Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 323(4): H774-H781, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36053750

RESUMO

Nicotinamide adenine dinucleotide (NAD+) decline is repeatedly observed in heart disease and its risk factors. Although strategies promoting NAD+ synthesis to elevate NAD+ levels improve cardiac function, whether inhibition of NAD+ consumption can be therapeutic is less investigated. In this study, we examined the role of sterile-α and TIR motif containing 1 (SARM1) NAD+ hydrolase in mouse hearts, using global SARM1-knockout mice (KO). Cardiac function was assessed by echocardiography in male and female KO mice and wild-type (WT) controls. Hearts were collected for biochemical, histological, and molecular analyses. We found that the cardiac NAD+ pool was elevated in female KO mice, but only trended to increase in male KO mice. SARM1 deletion induced changes to a greater number of NAD+ metabolism transcripts in male mice than in female mice. Body weights, cardiac systolic and diastolic function, and geometry showed no changes in both male and female KO mice compared with WT counterparts. Male KO mice showed a small, but significant, elevation in cardiac collagen levels compared with WT counterparts, but no difference in collagen levels was detected in female mice. The increased collagen levels were associated with greater number of altered profibrotic and senescence-associated inflammatory genes in male KO mice, but not in female KO mice.NEW & NOTEWORTHY We examined the effects of SARM1 deletion on NAD+ pool, transcripts of NAD+ metabolism, and fibrotic pathway for the first time in mouse hearts. We observed the sexually dimorphic effects of SARM1 deletion. How these sex-dependent effects influence the outcomes of SARM1 deficiency in male and female mice in responses to cardiac stresses warrant further investigation. The elevation of cardiac NAD+ pool by SARM1 deletion provides evidence that targeting SARM1 may reverse disease-related NAD+ decline.


Assuntos
Proteínas do Domínio Armadillo , NAD , Animais , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Feminino , Hidrolases , Masculino , Camundongos , Camundongos Knockout , NAD/metabolismo
2.
Curr Heart Fail Rep ; 19(4): 157-169, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35556214

RESUMO

PURPOSE OF THE REVIEW: This review summarizes current understanding on the roles of nicotinamide adenine dinucleotide (NAD+) metabolism in the pathogeneses and treatment development of metabolic and cardiac diseases. RECENT FINDINGS: NAD+ was identified as a redox cofactor in metabolism and a co-substrate for a wide range of NAD+-dependent enzymes. NAD+ redox imbalance and depletion are associated with many pathologies where metabolism plays a key role, for example cardiometabolic diseases. This review is to delineate the current knowledge about harnessing NAD+ metabolism as potential therapy for cardiometabolic diseases. The review has summarized how NAD+ redox imbalance and depletion contribute to the pathogeneses of cardiometabolic diseases. Therapeutic evidence involving activation of NAD+ synthesis in pre-clinical and clinical studies was discussed. While activation of NAD+ synthesis shows great promise for therapy, the field of NAD+ metabolism is rapidly evolving. Therefore, it is expected that new mechanisms will be discovered as therapeutic targets for cardiometabolic diseases.


Assuntos
Cardiopatias , Insuficiência Cardíaca , Humanos , NAD/metabolismo , Oxirredução
3.
Proc Natl Acad Sci U S A ; 114(7): 1732-1737, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28130547

RESUMO

Mitochondrial protein interactions and complexes facilitate mitochondrial function. These complexes range from simple dimers to the respirasome supercomplex consisting of oxidative phosphorylation complexes I, III, and IV. To improve understanding of mitochondrial function, we used chemical cross-linking mass spectrometry to identify 2,427 cross-linked peptide pairs from 327 mitochondrial proteins in whole, respiring murine mitochondria. In situ interactions were observed in proteins throughout the electron transport chain membrane complexes, ATP synthase, and the mitochondrial contact site and cristae organizing system (MICOS) complex. Cross-linked sites showed excellent agreement with empirical protein structures and delivered complementary constraints for in silico protein docking. These data established direct physical evidence of the assembly of the complex I-III respirasome and enabled prediction of in situ interfacial regions of the complexes. Finally, we established a database and tools to harness the cross-linked interactions we observed as molecular probes, allowing quantification of conformation-dependent protein interfaces and dynamic protein complex assembly.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Espectrometria de Massas/métodos , Proteínas Mitocondriais/química , Mapas de Interação de Proteínas , Animais , Reagentes de Ligações Cruzadas/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Fosforilação Oxidativa , Ligação Proteica , Conformação Proteica
4.
Circulation ; 134(12): 883-94, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27489254

RESUMO

BACKGROUND: Impairments of mitochondrial function in the heart are linked intricately to the development of heart failure, but there is no therapy for mitochondrial dysfunction. METHODS: We assessed the reduced/oxidized ratio of nicotinamide adenine dinucleotide (NADH/NAD(+) ratio) and protein acetylation in the failing heart. Proteome and acetylome analyses were followed by docking calculation, mutagenesis, and mitochondrial calcium uptake assays to determine the functional role of specific acetylation sites. The therapeutic effects of normalizing mitochondrial protein acetylation by expanding the NAD(+) pool also were tested. RESULTS: Increased NADH/NAD(+) and protein hyperacetylation, previously observed in genetic models of defective mitochondrial function, also are present in human failing hearts as well as in mouse hearts with pathologic hypertrophy. Elevation of NAD(+) levels by stimulating the NAD(+) salvage pathway suppressed mitochondrial protein hyperacetylation and cardiac hypertrophy, and improved cardiac function in responses to stresses. Acetylome analysis identified a subpopulation of mitochondrial proteins that was sensitive to changes in the NADH/NAD(+) ratio. Hyperacetylation of mitochondrial malate-aspartate shuttle proteins impaired the transport and oxidation of cytosolic NADH in the mitochondria, resulting in altered cytosolic redox state and energy deficiency. Furthermore, acetylation of oligomycin-sensitive conferring protein at lysine-70 in adenosine triphosphate synthase complex promoted its interaction with cyclophilin D, and sensitized the opening of mitochondrial permeability transition pore. Both could be alleviated by normalizing the NAD(+) redox balance either genetically or pharmacologically. CONCLUSIONS: We show that mitochondrial protein hyperacetylation due to NAD(+) redox imbalance contributes to the pathologic remodeling of the heart via 2 distinct mechanisms. Our preclinical data demonstrate a clear benefit of normalizing NADH/NAD(+) imbalance in the failing hearts. These findings have a high translational potential as the pharmacologic strategy of increasing NAD(+) precursors are feasible in humans.


Assuntos
Insuficiência Cardíaca/metabolismo , NAD/metabolismo , Animais , Transporte Biológico/fisiologia , Cálcio/metabolismo , Insuficiência Cardíaca/terapia , Humanos , Camundongos , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Oxirredução
5.
Anal Chem ; 88(9): 4817-24, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27043450

RESUMO

Coenzymes of cellular redox reactions and cellular energy mediate biochemical reactions fundamental to the functioning of all living cells. Despite their immense interest, no simple method exists to gain insights into their cellular concentrations in a single step. We show that a simple (1)H NMR experiment can simultaneously measure oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD(+) and NADH), oxidized and reduced forms of nicotinamide adenine dinucleotide phosphate (NADP(+) and NADPH), and adenosine triphosphate (ATP) and its precursors, adenosine diphosphate (ADP) and adenosine monophosphate (AMP), using mouse heart, kidney, brain, liver, and skeletal muscle tissue extracts as examples. Combining 1D/2D NMR experiments, chemical shift libraries, and authentic compound data, reliable peak identities for these coenzymes have been established. To assess this methodology, cardiac NADH and NAD(+) ratios/pool sizes were measured using mouse models with a cardiac-specific knockout of the mitochondrial Complex I Ndufs4 gene (cKO) and cardiac-specific overexpression of nicotinamide phosphoribosyltransferase (cNAMPT) as examples. Sensitivity of NAD(+) and NADH to cKO or cNAMPT was observed, as anticipated. Time-dependent investigations showed that the levels of NADH and NADPH diminish by up to ∼50% within 24 h; concomitantly, NAD(+) and NADP(+) increase proportionately; however, degassing the sample and flushing the sample tubes with helium gas halted such changes. The analysis protocol along with the annotated characteristic fingerprints for each coenzyme is provided for easy identification and absolute quantification using a single internal reference for routine use. The ability to visualize the ubiquitous coenzymes fundamental to cellular functions, simultaneously and reliably, offers a new avenue to interrogate the mechanistic details of cellular function in health and disease.


Assuntos
Coenzimas/análise , Complexo I de Transporte de Elétrons/análise , NADP/análise , NAD/análise , Nicotinamida Fosforribosiltransferase/análise , Espectroscopia de Prótons por Ressonância Magnética , Difosfato de Adenosina/análise , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Animais , Coenzimas/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Camundongos , NAD/metabolismo , NADP/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Oxirredução
6.
PLoS Comput Biol ; 11(6): e1004332, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26083688

RESUMO

Development of heart diseases is driven by dynamic changes in both the activity and connectivity of gene pathways. Understanding these dynamic events is critical for understanding pathogenic mechanisms and development of effective treatment. Currently, there is a lack of computational methods that enable analysis of multiple gene networks, each of which exhibits differential activity compared to the network of the baseline/healthy condition. We describe the iMDM algorithm to identify both unique and shared gene modules across multiple differential co-expression networks, termed M-DMs (multiple differential modules). We applied iMDM to a time-course RNA-Seq dataset generated using a murine heart failure model generated on two genotypes. We showed that iMDM achieves higher accuracy in inferring gene modules compared to using single or multiple co-expression networks. We found that condition-specific M-DMs exhibit differential activities, mediate different biological processes, and are enriched for genes with known cardiovascular phenotypes. By analyzing M-DMs that are present in multiple conditions, we revealed dynamic changes in pathway activity and connectivity across heart failure conditions. We further showed that module dynamics were correlated with the dynamics of disease phenotypes during the development of heart failure. Thus, pathway dynamics is a powerful measure for understanding pathogenesis. iMDM provides a principled way to dissect the dynamics of gene pathways and its relationship to the dynamics of disease phenotype. With the exponential growth of omics data, our method can aid in generating systems-level insights into disease progression.


Assuntos
Algoritmos , Biologia Computacional/métodos , Redes Reguladoras de Genes/genética , Insuficiência Cardíaca/genética , Animais , Perfilação da Expressão Gênica/métodos , Insuficiência Cardíaca/metabolismo , Camundongos , Camundongos Transgênicos , Biologia de Sistemas , Transcriptoma/genética
7.
Apoptosis ; 20(1): 29-37, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25378215

RESUMO

Diabetes is a pandemic disease with a higher occurrence in minority populations. The molecular mechanism to initiate diabetes-associated retinal angiogenesis remains largely unknown. We propose an inflammatory pathway of diabetic retinopathy in which macrophages in the diabetic eye provide TGFß to retinal endothelial cells (REC) in the retinal microvasculature. In response to TGFß, REC synthesize and secrete a pro-apoptotic BIGH3 (TGFß-Induced Gene Human Clone 3) protein, which acts in an autocrine loop to induce REC apoptosis. Rhesus monkey retinal endothelial cells (RhREC) were treated with dMCM (cell media of macrophages treated with high glucose and LDL) and assayed for apoptosis (TUNEL), BIGH3 mRNA (qPCR), and protein (Western blots) expressions. Cells were also treated with ΤGFß1 and 2 for BIGH3 mRNA and protein expression. Inhibition assays were carried out using antibodies for TGFß1 and for BIGH3 to block apoptosis and mRNA expression. BIGH3 in cultured RhREC cells were identified by immunohistochemistry (IHC). Distribution of BIGH3 and macrophages in the diabetic mouse retina was examined with IHC. RhRECs treated with dMCM or TGFß showed a significant increase in apoptosis and BIGH3 protein expression. Recombinant BIGH3 added to RhREC culture medium led to a dose-dependent increase in apoptosis. Antibodies (Ab) directed against BIGH3 and TGFß, as well as TGFß receptor blocker resulted in a significant reduction in apoptosis induced by either dMCM, TGFß or BIGH3. IHC showed that cultured RhREC constitutively expressed BIGH3. Macrophage and BIGH3 protein were co-localized to the inner retina of the diabetic mouse eye. Our results support a novel inflammatory pathway for diabetic retinopathy. This pathway is initiated by TGFß released from macrophages, which promotes synthesis and release of BIGH3 protein by REC and REC apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Células Endoteliais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Retina/citologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/farmacologia , Humanos , Macaca mulatta , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retina/efeitos dos fármacos , Retina/metabolismo , Vasos Retinianos/citologia , Vasos Retinianos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/farmacologia
9.
Circ J ; 79(9): 1863-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26248514

RESUMO

Heart failure is a leading cause of death worldwide. Despite medical advances, the dismal prognosis of heart failure has not been improved. The heart is a high energy-demanding organ. Impairments of cardiac energy metabolism and mitochondrial function are intricately linked to cardiac dysfunction. Mitochondrial dysfunction contributes to impaired myocardial energetics and increased oxidative stress in heart failure, and the opening of mitochondrial permeability transition pore triggers cell death and myocardial remodeling. Therefore, there has been growing interest in targeting mitochondria and metabolism for heart failure therapy. Recent developments suggest that mitochondrial protein lysine acetylation modulates the sensitivity of the heart to stress and hence the propensity to heart failure. This article reviews the role of mitochondrial dysfunction in heart failure, with a special emphasis on the regulation of the nicotinamide adenine dinucleotide (NAD(+)/NADH) ratio and sirtuin-dependent lysine acetylation by mitochondrial function. Strategies for targeting NAD(+)-sensitive mechanisms in order to intervene in protein lysine acetylation and, thereby, improve stress tolerance, are described, and their usefulness in heart failure therapy is discussed.


Assuntos
Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Acetilação , Insuficiência Cardíaca/patologia , Humanos , Lisina/metabolismo , Mitocôndrias Cardíacas/patologia , Sirtuínas/metabolismo
10.
Proc Natl Acad Sci U S A ; 109(41): E2803-12, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22991462

RESUMO

Monocytic adhesion and chemotaxis are regulated by MAPK pathways, which in turn are controlled by redox-sensitive MAPK phosphatases (MKPs). We recently reported that metabolic disorders prime monocytes for enhanced recruitment into vascular lesions by increasing monocytes' responsiveness to chemoattractants. However, the molecular details of this proatherogenic mechanism were not known. Here we show that monocyte priming results in the S-glutathionylation and subsequent inactivation and degradation of MKP-1. Chronic exposure of human THP-1 monocytes to diabetic conditions resulted in the loss of MKP-1 protein levels, the hyperactivation of ERK and p38 in response to monocyte chemoattractant protein-1 (MCP-1), and increased monocyte adhesion and chemotaxis. Knockdown of MKP-1 mimicked the priming effects of metabolic stress, whereas MKP-1 overexpression blunted both MAPK activation and monocyte adhesion and migration induced by MCP-1. Metabolic stress promoted the S-glutathionylation of MKP-1, targeting MKP-1 for proteasomal degradation. Preventing MKP-1 S-glutathionylation in metabolically stressed monocytes by overexpressing glutaredoxin 1 protected MKP-1 from degradation and normalized monocyte adhesion and chemotaxis in response to MCP-1. Blood monocytes isolated from diabetic mice showed a 55% reduction in MKP-1 activity compared with nondiabetic mice. Hematopoietic MKP-1 deficiency in atherosclerosis-prone mice mimicked monocyte priming and dysfunction associated with metabolic disorders, increased monocyte chemotaxis in vivo, and accelerated atherosclerotic lesion formation. In conclusion, we identified MKP-1 as a central redox-sensitive regulator of monocyte adhesion and migration and showed that the loss of MKP-1 activity is a critical step in monocyte priming and the metabolic stress-induced conversion of blood monocytes into a proatherogenic phenotype.


Assuntos
Quimiotaxia , Fosfatase 1 de Especificidade Dupla/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Animais , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/metabolismo , Western Blotting , Adesão Celular , Linhagem Celular , Células Cultivadas , Quimiocina CCL2/farmacologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Glutationa/metabolismo , Humanos , Lipoproteínas LDL/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Monócitos/citologia , Monócitos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Am J Physiol Heart Circ Physiol ; 307(9): H1307-16, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25172896

RESUMO

Mitochondrial dysfunction in animal models of heart failure is associated with downregulation of the peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α pathway. To test whether PGC-1α is an appropriate therapeutic target for increasing mitochondrial biogenesis and improving function in heart failure, we used a transgenic (TG) mouse model of moderate overexpression of PGC-1α (∼3-fold) in the heart. TG mice had small increases in citrate synthase activity and mitochondria size in the heart without alterations in myocardial energetics or cardiac function at baseline. In vivo dobutamine stress increased fractional shortening in wild-type mice, but this increase was attenuated in TG mice, whereas ex vivo isolated perfused TG hearts demonstrated normal functional and energetic response to high workload challenge. When subjected to pressure overload by transverse aortic constriction (TAC), TG mice displayed a significantly greater acute mortality for both male and female mice; however, long-term survival up to 8 wk was similar between the two groups. TG mice also showed a greater decrease in fractional shortening and a greater increase in left ventricular chamber dimension in response to TAC. Mitochondrial gene expression and citrate synthase activity were mildly increased in TG mice compared with wild-type mice, and this difference was also maintained after TAC. Our data suggest that a moderate level of PGC-1α overexpression in the heart compromises acute survival and does not improve cardiac function during chronic pressure overload in mice.


Assuntos
Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/metabolismo , Renovação Mitocondrial , Fatores de Transcrição/metabolismo , Animais , Citrato (si)-Sintase/genética , Citrato (si)-Sintase/metabolismo , Feminino , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos , Mitocôndrias Cardíacas/ultraestrutura , Contração Miocárdica , Fatores de Transcrição/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
12.
Arterioscler Thromb Vasc Biol ; 32(2): 415-26, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22095986

RESUMO

OBJECTIVE: Metabolic disorders increase monocyte chemoattractant protein-1 (MCP-1)-induced monocyte chemotaxis in mice. The goal of this study was to determine the molecular mechanisms responsible for the enhanced responsiveness of monocytes to chemoattractants induced by metabolic stress. METHODS AND RESULTS: Chronic exposure of monocytes to diabetic conditions induced by human LDL plus high D-glucose concentrations (LDL+HG) promoted NADPH Oxidase 4 (Nox4) expression, increased intracellular H(2)O(2) formation, stimulated protein S-glutathionylation, and increased chemotaxis in response to MCP-1, platelet-derived growth factor B, and RANTES. Both H(2)O(2) added exogenously and overexpression of Nox4 mimicked LDL+HG-induced monocyte priming, whereas Nox4 knockdown protected monocytes against metabolic stress-induced priming and accelerated chemotaxis. Exposure of monocytes to LDL+HG promoted the S-glutathionylation of actin, decreased the F-actin/G-actin ratio, and increased actin remodeling in response to MCP-1. Preventing LDL+HG-induced protein S-glutathionylation by overexpressing glutaredoxin 1 prevented monocyte priming and normalized monocyte chemotaxis in response to MCP-1. Induction of hypercholesterolemia and hyperglycemia in C57BL/6 mice promoted Nox4 expression and protein S-glutathionylation in macrophages, and increased macrophage recruitment into MCP-1-loaded Matrigel plugs implanted subcutaneous in these mice. CONCLUSIONS: By increasing actin-S-glutathionylation and remodeling, metabolic stress primes monocytes for chemoattractant-induced transmigration and recruitment to sites of vascular injury. This Nox4-dependent process provides a novel mechanism through which metabolic disorders promote atherogenesis.


Assuntos
Quimiotaxia/fisiologia , Síndrome Metabólica/metabolismo , Monócitos/metabolismo , NADPH Oxidases/metabolismo , Estresse Fisiológico/fisiologia , Actinas/metabolismo , Animais , Células Cultivadas , Quimiocina CCL2/farmacologia , Quimiocina CCL5/farmacologia , Quimiotaxia/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Síndrome Metabólica/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/efeitos dos fármacos , NADPH Oxidase 4 , Proteínas Proto-Oncogênicas c-sis/farmacologia
13.
bioRxiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398078

RESUMO

Diastolic dysfunction is a key feature of the aging heart. We have shown that late-life treatment with mTOR inhibitor, rapamycin, reverses age-related diastolic dysfunction in mice but the molecular mechanisms of the reversal remain unclear. To dissect the mechanisms by which rapamycin improves diastolic function in old mice, we examined the effects of rapamycin treatment at the levels of single cardiomyocyte, myofibril and multicellular cardiac muscle. Compared to young cardiomyocytes, isolated cardiomyocytes from old control mice exhibited prolonged time to 90% relaxation (RT 90 ) and time to 90% Ca 2+ transient decay (DT 90 ), indicating slower relaxation kinetics and calcium reuptake with age. Late-life rapamycin treatment for 10 weeks completely normalized RT 90 and partially normalized DT 90 , suggesting improved Ca 2+ handling contributes partially to the rapamycin-induced improved cardiomyocyte relaxation. In addition, rapamycin treatment in old mice enhanced the kinetics of sarcomere shortening and Ca 2+ transient increase in old control cardiomyocytes. Myofibrils from old rapamycin-treated mice displayed increased rate of the fast, exponential decay phase of relaxation compared to old controls. The improved myofibrillar kinetics were accompanied by an increase in MyBP-C phosphorylation at S282 following rapamycin treatment. We also showed that late-life rapamycin treatment normalized the age-related increase in passive stiffness of demembranated cardiac trabeculae through a mechanism independent of titin isoform shift. In summary, our results showed that rapamycin treatment normalizes the age-related impairments in cardiomyocyte relaxation, which works conjointly with reduced myocardial stiffness to reverse age-related diastolic dysfunction.

14.
Elife ; 122023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37276142

RESUMO

Mitochondria play an important role in both normal heart function and disease etiology. We report analysis of common genetic variations contributing to mitochondrial and heart functions using an integrative proteomics approach in a panel of inbred mouse strains called the Hybrid Mouse Diversity Panel (HMDP). We performed a whole heart proteome study in the HMDP (72 strains, n=2-3 mice) and retrieved 848 mitochondrial proteins (quantified in ≥50 strains). High-resolution association mapping on their relative abundance levels revealed three trans-acting genetic loci on chromosomes (chr) 7, 13 and 17 that regulate distinct classes of mitochondrial proteins as well as cardiac hypertrophy. DAVID enrichment analyses of genes regulated by each of the loci revealed that the chr13 locus was highly enriched for complex-I proteins (24 proteins, P=2.2E-61), the chr17 locus for mitochondrial ribonucleoprotein complex (17 proteins, P=3.1E-25) and the chr7 locus for ubiquinone biosynthesis (3 proteins, P=6.9E-05). Follow-up high resolution regional mapping identified NDUFS4, LRPPRC and COQ7 as the candidate genes for chr13, chr17 and chr7 loci, respectively, and both experimental and statistical analyses supported their causal roles. Furthermore, a large cohort of Diversity Outbred mice was used to corroborate Lrpprc gene as a driver of mitochondrial DNA (mtDNA)-encoded gene regulation, and to show that the chr17 locus is specific to heart. Variations in all three loci were associated with heart mass in at least one of two independent heart stress models, namely, isoproterenol-induced heart failure and diet-induced obesity. These findings suggest that common variations in certain mitochondrial proteins can act in trans to influence tissue-specific mitochondrial functions and contribute to heart hypertrophy, elucidating mechanisms that may underlie genetic susceptibility to heart failure in human populations.


Assuntos
Insuficiência Cardíaca , Proteoma , Animais , Camundongos , Cardiomegalia/genética , DNA Mitocondrial/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Camundongos Endogâmicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo
15.
Circ Res ; 106(9): 1489-97, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20360249

RESUMO

RATIONALE: The enhanced formation of intracellular reactive oxygen species (ROS) induced by oxidized low-density lipoprotein (OxLDL) promotes macrophage death, a process likely to contribute to the formation of necrotic cores and the progression of atherosclerotic lesions. Yet macrophage deficiency of phagocytic NADPH oxidase (Nox2), the primary source of ROS in macrophages, does not reduce atherosclerotic lesion development in mice. This suggests an as yet unidentified NADPH oxidase may be present in macrophages and responsible for the intracellular ROS formation induced by OxLDL. OBJECTIVE: The aim of this study was to identify the source of intracellular ROS involved in macrophage death. METHODS AND RESULTS: Nox4 was expressed in human monocytes and mature macrophages, and was localized to the endoplasmic reticulum and to defined foci within the nucleus. Nox4 colocalized with p22(phox), and both proteins were upregulated in response to OxLDL stimulation, whereas Nox2/gp91(phox) levels remained unchanged. Induction of Nox4 expression, intracellular ROS formation and macrophage cytotoxicity induced by OxLDL were blocked by MEK1/2 inhibition, but not by inhibitors of p38-MAPK (mitogen-activated protein kinase), JNK (Jun N-terminal kinase), or JAK2 (Janus kinase 2). Small interfering RNA knockdown of Nox4 inhibited both intracellular ROS production and macrophage cytotoxicity induced by OxLDL, whereas Nox4 overexpression enhanced both OxLDL-stimulated ROS formation and macrophage death. CONCLUSIONS: Nox4 is a novel source of intracellular ROS in human monocytes and macrophages. Induction of Nox4 by OxLDL is mediated by the MEK1/ERK pathway and required for OxLDL cytotoxicity in human macrophages, implicating monocytic Nox4 in atherogenesis.


Assuntos
Leucócitos Mononucleares/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Morte Celular , Células Cultivadas , Humanos , Leucócitos Mononucleares/citologia , Macrófagos/citologia , NADPH Oxidase 4 , Oxirredução
16.
Circ Heart Fail ; 14(8): e008170, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34374300

RESUMO

BACKGROUND: Diabetes is a risk factor for heart failure and promotes cardiac dysfunction. Diabetic tissues are associated with nicotinamide adenine dinucleotide (NAD+) redox imbalance; however, the hypothesis that NAD+ redox imbalance causes diabetic cardiomyopathy has not been tested. This investigation used mouse models with altered NAD+ redox balance to test this hypothesis. METHODS: Diabetic stress was induced in mice by streptozotocin. Cardiac function was measured by echocardiography. Heart and plasma samples were collected for biochemical, histological, and molecular analyses. Two mouse models with altered NAD+ redox states (1, Ndufs4 [NADH:ubiquinone oxidoreductase subunit S4] knockout, cKO, and 2, NAMPT [nicotinamide phosphoribosyltranferase] transgenic mice, NMAPT) were used. RESULTS: Diabetic stress caused cardiac dysfunction and lowered NAD+/NADH ratio (oxidized/reduced ratio of nicotinamide adenine dinucleotide) in wild-type mice. Mice with lowered cardiac NAD+/NADH ratio without baseline dysfunction, cKO mice, were challenged with chronic diabetic stress. NAD+ redox imbalance in cKO hearts exacerbated systolic (fractional shortening: 27.6% versus 36.9% at 4 weeks, male cohort P<0.05), and diastolic dysfunction (early-to-late ratio of peak diastolic velocity: 0.99 versus 1.20, P<0.05) of diabetic mice in both sexes. Collagen levels and transcripts of fibrosis and extracellular matrix-dependent pathways did not show changes in diabetic cKO hearts, suggesting that the exacerbated cardiac dysfunction was due to cardiomyocyte dysfunction. NAD+ redox imbalance promoted superoxide dismutase 2 acetylation, protein oxidation, troponin I S150 phosphorylation, and impaired energetics in diabetic cKO hearts. Importantly, elevation of cardiac NAD+ levels by NAMPT normalized NAD+ redox balance, alleviated cardiac dysfunction (fractional shortening: 40.2% versus 24.8% in cKO:NAMPT versus cKO, P<0.05; early-to-late ratio of peak diastolic velocity: 1.32 versus 1.04, P<0.05), and reversed pathogenic mechanisms in diabetic mice. CONCLUSIONS: Our results show that NAD+ redox imbalance to regulate acetylation and phosphorylation is a critical mediator of the progression of diabetic cardiomyopathy and suggest the therapeutic potential for diabetic cardiomyopathy by harnessing NAD+ metabolism.


Assuntos
Cardiomiopatias Diabéticas/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , NAD/farmacologia , Oxirredução/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/patologia , Complexo I de Transporte de Elétrons/metabolismo , Insuficiência Cardíaca/patologia , Camundongos , Miócitos Cardíacos/patologia , NAD/metabolismo , Oxirredução/efeitos da radiação
17.
Arterioscler Thromb Vasc Biol ; 29(11): 1779-86, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19592463

RESUMO

BACKGROUND: Strengthening the macrophage glutathione redox buffer reduces macrophage content and decreases the severity of atherosclerotic lesions in LDL receptor-deficient (LDLR(-/-)) mice, but the underlying mechanisms were not clear. This study examined the effect of metabolic stress on the thiol redox state, chemotactic activity in vivo, and the recruitment of macrophages into atherosclerotic lesions and kidneys of LDL-R(-/-) mice in response to mild, moderate, and severe metabolic stress. METHODS AND RESULTS: Reduced glutathione (GSH) and glutathione disulfide (GSSG) levels in peritoneal macrophages isolated from mildly, moderately, and severe metabolically-stressed LDL-R(-/-) mice were measured by HPLC, and the glutathione reduction potential (E(h)) was calculated. Macrophage E(h) correlated with the macrophage content in both atherosclerotic (r(2)=0.346, P=0.004) and renal lesions (r(2)=0.480, P=0.001) in these mice as well as the extent of both atherosclerosis (r(2)=0.414, P=0.001) and kidney injury (r(2)=0.480, P=0.001). Compared to LDL-R(-/-) mice exposed to mild metabolic stress, macrophage recruitment into MCP-1-loaded Matrigel plugs injected into LDL-R(-/-) mice increased 2.6-fold in moderately metabolically-stressed mice and 9.8-fold in severely metabolically-stressed mice. The macrophage E(h) was a strong predictor of macrophage chemotaxis (r(2)=0.554, P<0.001). CONCLUSIONS: Thiol oxidative stress enhances macrophage recruitment into vascular and renal lesions by increasing the responsiveness of macrophages to chemoattractants. This novel mechanism contributes at least in part to accelerated atherosclerosis and kidney injury associated with dyslipidemia and diabetes in mice.


Assuntos
Aterosclerose/metabolismo , Hipercolesterolemia/metabolismo , Nefropatias/etiologia , Macrófagos Peritoneais/metabolismo , Estresse Oxidativo , Receptores de LDL/metabolismo , Análise de Variância , Animais , Aterosclerose/complicações , Aterosclerose/patologia , Análise Química do Sangue , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Feminino , Hipercolesterolemia/complicações , Nefropatias/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução , Probabilidade , Distribuição Aleatória , Receptores de LDL/deficiência , Estreptozocina , Compostos de Sulfidrila/metabolismo , Urinálise
18.
Sci Rep ; 9(1): 3073, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816177

RESUMO

Leigh syndrome is a mitochondrial disease characterized by neurological disorders, metabolic abnormality and premature death. There is no cure for Leigh syndrome; therefore, new therapeutic targets are urgently needed. In Ndufs4-KO mice, a mouse model of Leigh syndrome, we found that Complex I deficiency led to declines in NAD+ levels and NAD+ redox imbalance. We tested the hypothesis that elevation of NAD+ levels would benefit Ndufs4-KO mice. Administration of NAD+ precursor, nicotinamide mononucleotide (NMN) extended lifespan of Ndufs4-KO mice and attenuated lactic acidosis. NMN increased lifespan by normalizing NAD+ redox imbalance and lowering HIF1a accumulation in Ndufs4-KO skeletal muscle without affecting the brain. NMN up-regulated alpha-ketoglutarate (KG) levels in Ndufs4-KO muscle, a metabolite essential for HIF1a degradation. To test whether supplementation of KG can treat Ndufs4-KO mice, a cell-permeable KG, dimethyl ketoglutarate (DMKG) was administered. DMKG extended lifespan of Ndufs4-KO mice and delayed onset of neurological phenotype. This study identified therapeutic mechanisms that can be targeted pharmacologically to treat Leigh syndrome.


Assuntos
Doença de Leigh/tratamento farmacológico , Doença de Leigh/metabolismo , NAD/metabolismo , Mononucleotídeo de Nicotinamida/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Doença de Leigh/genética , Longevidade/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Terapia de Alvo Molecular
19.
Cell Syst ; 6(1): 136-141.e5, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29199018

RESUMO

While modern structural biology technologies have greatly expanded the size and type of protein complexes that can now be studied, the ability to derive large-scale structural information on proteins and complexes as they exist within tissues is practically nonexistent. Here, we demonstrate the application of crosslinking mass spectrometry to identify protein structural features and interactions in tissue samples, providing systems structural biology insight into protein complexes as they exist in the mouse heart. This includes insights into multiple conformational states of sarcomere proteins, as well as interactions among OXPHOS complexes indicative of supercomplex assembly. The extension of crosslinking mass spectrometry analysis into the realm of tissues opens the door to increasing our understanding of protein structures and interactions within the context of the greater biological system.


Assuntos
Reagentes de Ligações Cruzadas/química , Coração/fisiologia , Espectrometria de Massas/métodos , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Conformação Proteica , Proteínas/química , Biologia de Sistemas/métodos
20.
J Mol Biol ; 348(2): 419-31, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15811378

RESUMO

The origin of reduced heat capacity change of unfolding (DeltaC(p)) commonly observed in thermophilic proteins is controversial. The established theory that DeltaC(p) is correlated with change of solvent-accessible surface area cannot account for the large differences in DeltaC(p) observed for thermophilic and mesophilic homologous proteins, which are very similar in structures. We have determined the protein stability curves, which describe the temperature dependency of the free energy change of unfolding, for a thermophilic ribosomal protein L30e from Thermococcus celer, and its mesophilic homologue from yeast. Values of DeltaC(p), obtained by fitting the free energy change of unfolding to the Gibbs-Helmholtz equation, were 5.3 kJ mol(-1) K(-1) and 10.5 kJ mol(-1) K(-1) for T.celer and yeast L30e, respectively. We have created six charge-to-neutral mutants of T.celer L30e. Removal of charges at Glu6, Lys9, and Arg92 decreased the melting temperatures of T.celer L30e by approximately 3-9 degrees C, and the differences in melting temperatures were smaller with increasing concentration of salt. These results suggest that these mutations destabilize T.celer L30e by disrupting favorable electrostatic interactions. To determine whether electrostatic interactions contribute to the reduced DeltaC(p) of the thermophilic protein, we have determined DeltaC(p) for wild-type and mutant T.celer L30e by Gibbs-Helmholtz and by van't Hoff analyses. A concomitant increase in DeltaC(p) was observed for those charge-to-neutral mutants that destabilize T.celer L30e by removing favorable electrostatic interactions. The crystal structures of K9A, E90A, and R92A, were determined, and no structural change was observed. Taken together, our results support the conclusion that electrostatic interactions contribute to the reduced DeltaC(p) of T.celer L30e.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Temperatura Alta , Dobramento de Proteína , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Thermococcus/química , Proteínas Arqueais/genética , Cristalografia por Raios X , Modelos Moleculares , Mutação/genética , Desnaturação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteínas Ribossômicas/genética , Cloreto de Sódio/farmacologia , Solventes/química , Eletricidade Estática , Thermococcus/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa