Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 25(20): 5322-5329, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30768814

RESUMO

The rational design and implementation of a one-pot method is reported for the facile synthesis of Pd@PtnL (nL denotes the number of Pt atomic layers) core-shell icosahedral nanocrystals in a single step. The success of this method relies on the use of Na2 PdCl4 and Pt(acac)2 as the precursors to Pd and Pt atoms, respectively. Our quantitative analysis of the reduction kinetics indicates that the PdII and PtII precursors are sequentially reduced with a major gap between the two events. Specifically, the PdII precursor is reduced first, leading to the formation of Pd-based icosahedral seeds with a multiply-twinned structure. In contrast, the PtII precursor prefers to take a surface reduction pathway on the just-formed icosahedral seeds. As such, the otherwise extremely slow reduction of the PtII precursor can be dramatically accelerated through an autocatalytic process for the deposition of Pt atoms as a conformal shell on each Pd icosahedral core. Compared to the conventional approach of seed-mediated growth, the throughput for the one-pot synthesis of Pd@PtnL core-shell nanocrystals can be increased by more than 30-fold. When used as catalysts, the Pd@Pt4.5L core-shell icosahedral nanocrystals show specific and mass activities of 0.83 mA cm-2 and 0.39 A mgPt -1 , respectively, at 0.9 V toward oxygen reduction. The Pt-based nanocages derived from the core-shell nanocrystals also show enhanced specific (1.45 mA cm-2 ) and mass activities (0.75 A mgPt -1 ) at 0.9 V, which are 3.8 and 3.3 times greater than those of the commercial Pt/C, respectively.

2.
Nano Lett ; 17(1): 334-340, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27960060

RESUMO

Despite the pivotal role played by the reduction of a salt precursor in the synthesis of metal nanocrystals, it is still unclear how the precursor is reduced. The precursor can be reduced to an atom in the solution phase, followed by its deposition onto the surface of a growing nanocrystal. Alternatively, the precursor can adsorb onto the surface of a growing nanocrystal, followed by reduction through an autocatalytic process. With Pd as an example, here we demonstrate that the pathway has a correlation with the reduction kinetics involved. Our quantitative analyses of the reduction kinetics of PdCl42- and PdBr42- by ascorbic acid at room temperature in the absence and presence of Pd nanocubes, respectively, suggest that PdCl42- was reduced in the solution phase while PdBr42- was reduced on the surface of a growing nanocrystal. Our results also demonstrate that the reduction pathway of PdBr42- by ascorbic acid could be switched from surface to solution by raising the reaction temperature.

3.
ChemSusChem ; 8(7): 1244-53, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25772944

RESUMO

A novel ionic-liquid mediator, 1-butyl-3-{2-oxo-2-[(2,2,6,6-tetramethylpiperidin-4-yl)amino]ethyl}-1H-imidazol-3-ium selenocyanate (ITSeCN), has been successfully synthesized for dye-sensitized solar cells (DSSCs). ITSeCN possesses dual redox channels, imidazolium-functionalized 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) and selenocyanate, which can serve as the cationic redox mediator and the anionic redox mediator, respectively. Therefore, ITSeCN has a favorable redox nature, which results in a more positive standard potential, larger diffusivity, and better kinetic heterogeneous rate constant than those of iodide. The DSSC with the ITSeCN electrolyte shows an efficiency of 8.38 % with a high open-current voltage (VOC ) of 854.3 mV, and this VOC value is about 150 mV higher than that for the iodide-based DSSC. Moreover, different electrocatalytic materials were employed to trigger the redox reaction of ITSeCN. The ITSeCN-based DSSC with the CoSe counter electrode achieved the best performance of 9.01 %, which suggested that transition-metal compound-type materials would be suitable for our newly synthesized ITSeCN mediator.


Assuntos
Corantes/química , Fontes de Energia Elétrica , Líquidos Iônicos/química , Energia Solar , Óxidos N-Cíclicos/química , Eletroquímica , Eletrodos , Imidazóis/química , Cinética , Oxirredução , Rotação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa