Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(11): e2206918, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36567426

RESUMO

Abundant availability of seawater grants economic and resource-rich benefits to water electrolysis technology requiring high-purity water if undesired reactions such as chlorine evolution reaction (CER) competitive to oxygen evolution reaction (OER) are suppressed. Inspired by a conceptual computational work suggesting that OER is kinetically improved via a double activation within 7 Å-gap nanochannels, RuO2 catalysts are realized to have nanoscopic channels at 7, 11, and 14 Å gap in average (dgap ), and preferential activity improvement of OER over CER in seawater by using nanochanneled RuO2 is demonstrated. When the channels are developed to have 7 Å gap, the OER current is maximized with the overpotential required for triggering OER minimized. The gap value guaranteeing the highest OER activity is identical to the value expected from the computational work. The improved OER activity significantly increases the selectivity of OER over CER in seawater since the double activation by the 7 Å-nanoconfined environments to allow an OER intermediate (*OOH) to be doubly anchored to Ru and O active sites does not work on the CER intermediate (*Cl). Successful operation of direct seawater electrolysis with improved hydrogen production is demonstrated by employing the 7 Å-nanochanneled RuO2 as the OER electrocatalyst.

2.
Adv Mater ; 35(13): e2208423, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36600458

RESUMO

Understanding the local cation order in the crystal structure and its correlation with electrochemical performances has advanced the development of high-energy Mn-rich cathode materials for Li-ion batteries, notably Li- and Mn-rich layered cathodes (LMR, e.g., Li1.2 Ni0.13 Mn0.54 Co0.13 O2 ) that are considered as nanocomposite layered materials with C2/m Li2 MnO3 -type medium-range order (MRO). Moreover, the Li-transport rate in high-capacity Mn-based disordered rock-salt (DRX) cathodes (e.g., Li1.2 Mn0.4 Ti0.4 O2 ) is found to be influenced by the short-range order of cations, underlining the importance of engineering the local cation order in designing high-energy materials. Herein, the nanocomposite is revealed, with a heterogeneous nature (like MRO found in LMR) of ultrahigh-capacity partially ordered cathodes (e.g., Li1.68 Mn1.6 O3.7 F0.3 ) made of distinct domains of spinel-, DRX- and layered-like phases, contrary to conventional single-phase DRX cathodes. This multi-scale understanding of ordering informs engineering the nanocomposite material via Ti doping, altering the intra-particle characteristics to increase the content of the rock-salt phase and heterogeneity within a particle. This strategy markedly improves the reversibility of both Mn- and O-redox processes to enhance the cycling stability of the partially ordered DRX cathodes (nearly ≈30% improvement of capacity retention). This work sheds light on the importance of nanocomposite engineering to develop ultrahigh-performance, low-cost Li-ion cathode materials.

3.
Adv Mater ; 33(18): e2100352, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33783055

RESUMO

In recent years, Li- and Mn-rich layered oxides (LMRs) have been vigorously explored as promising cathodes for next-generation, Li-ion batteries due to their high specific energy. Nevertheless, their actual implementation is still far from a reality since the trade-off relationship between the particle size and chemical reversibility prevents LMRs from achieving a satisfactory, industrial energy density. To solve this material dilemma, herein, a novel morphological and structural design is introduced to Li1.11 Mn0.49 Ni0.29 Co0.11 O2 , reporting a sub-micrometer-level LMR with a relatively delocalized, excess-Li system. This system exhibits an ultrahigh energy density of 2880 Wh L-1 and a long-lasting cycle retention of 83.1% after the 100th cycle for 45 °C full-cell cycling, despite its practical electrode conditions. This outstanding electrochemical performance is a result of greater lattice-oxygen stability in the delocalized excess-Li system because of the low amount of highly oxidized oxygen ions. Geometric dispersion of the labile oxygen ions effectively suppresses oxygen evolution from the lattice when delithiated, eradicating the rapid energy degradation in a practical cell system.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa