Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Am J Respir Cell Mol Biol ; 69(1): 57-72, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36930952

RESUMO

Various environmental compounds are inducers of lung injury. Mitochondria are crucial organelles that can be affected by many lung diseases. NecroX is an indole-derived antioxidant that specifically targets mitochondria. We aimed to evaluate the therapeutic potential and related molecular mechanisms of NecroX in preclinical models of fatal lung injury. We investigated the therapeutic effects of NecroX on two different experimental models of lung injury induced by polyhexamethylene guanidine (PHMG) and bleomycin, respectively. We also performed transcriptome analysis of lung tissues from PHMG-exposed mice and compared the expression profiles with those from dozens of bleomycin-induced fibrosis public data sets. Respiratory exposure to PHMG and bleomycin led to fatal lung injury manifesting extensive inflammation followed by fibrosis. These specifically affected mitochondria regarding biogenesis, mitochondrial DNA integrity, and the generation of mitochondrial reactive oxygen species in various cell types. NecroX significantly improved the pathobiologic features of the PHMG- and bleomycin-induced lung injuries through regulation of mitochondrial oxidative stress. Endoplasmic reticulum stress was also implicated in PHMG-associated lung injuries of mice and humans, and NecroX alleviated PHMG-induced lung injury and the subsequent fibrosis, in part, via regulation of endoplasmic reticulum stress in mice. Gene expression profiles of PHMG-exposed mice were highly consistent with public data sets of bleomycin-induced lung injury models. Pathways related to mitochondrial activities, including oxidative stress, oxidative phosphorylation, and mitochondrial translation, were upregulated, and these patterns were significantly reversed by NecroX. These findings demonstrate that NecroX possesses therapeutic potential for fatal lung injury in humans.


Assuntos
Lesão Pulmonar , Humanos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/patologia , Guanidina/farmacologia , Pulmão/patologia , Guanidinas/farmacologia , Estresse Oxidativo , Fibrose , Bleomicina/farmacologia , Estresse do Retículo Endoplasmático
2.
Int J Mol Sci ; 24(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37511015

RESUMO

Liver injury can be acute or chronic, resulting from a variety of factors, including viral hepatitis, drug overdose, idiosyncratic drug reaction, or toxins, while the progression of pathogenesis in the liver rises due to the involvement of numerous cytokines and growth factor mediators. Thus, the identification of more effective biomarker-based active phytochemicals isolated from medicinal plants is a promising strategy to protect against CCl4-induced liver injury. Vitis vinifera L. (VE) and Centella asiatica (CE) are well-known medicinal plants that possess anti-inflammatory and antioxidant properties. However, synergism between the two has not previously been studied. Here, we investigated the synergistic effects of a V. vinifera L. (VE) leaf, C. asiatica (CE) extract combination (VCEC) against CCl4-induced liver injury. Acute liver injury was induced by a single intraperitoneal administration of CCl4 (1 mL/kg). VCEC was administered orally for three consecutive days at various concentrations (100 and 200 mg/kg) prior to CCl4 injection. The extent of liver injury and the protective effects of VCEC were evaluated by biochemical analysis and histopathological studies. Oxidative stress was evaluated by measuring malondialdehyde (MDA) and glutathione (GSH) levels and Western blotting. VCEC treatment significantly reduced serum transaminase levels (AST and ALT), tumor necrosis factor-α (TNF-α), and reactive oxygen species (ROS). CCl4- induced apoptosis was inhibited by VCEC treatment by reducing cleaved caspase-3 and Bcl2-associated X protein (Bax). VCEC-treated mice significantly restored cytochrome P450 2E1, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) expression in CCl4-treated mice. In addition, VCEC downregulated overexpression of proinflammatory cytokines and hepatic nuclear factor kappa B (NF-κB) and inhibited CCl4-mediated apoptosis. Collectively, VCEC exhibited synergistic protective effects against liver injury through its antioxidant, anti-inflammatory, and antiapoptotic ability against oxidative stress, inflammation, and apoptosis. Therefore, VCEC appears promising as a potential therapeutic agent for CCl4-induced acute liver injury in mice.


Assuntos
Centella , Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Vitis , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Vitis/metabolismo , Centella/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Glutationa/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Tetracloreto de Carbono/farmacologia
3.
BMC Complement Altern Med ; 17(1): 179, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28356096

RESUMO

BACKGROUND: Medicinal plants are becoming more popular in the treatment of various diseases because of the adverse effects of the current therapy, especially antioxidant plant components such as phenols and flavonoids have a protective role against oxidative stress-induced degenerative diseases like diabetes. Thus, the purpose of this study was to investigate ß-cell protection and antidiabetic activities of Crassocephalum crepidioides (Asteraceae) Benth. S. Moore. METHOD: The in-vitro study was conducted by the pancreatic ß-cell culture and α-amylase inhibition technique which includes two methods, namely starch-iodine method and 3,5-dinitrosalicylic acid (DNSA) method. On the other hand, the in-vivo study was performed by oral glucose tolerance test (OGTT) method and alloxan-induced diabetes method by using Wistar albino rat. At the end pancreatic specimens were removed and processed for histopathological study. RESULT: The plant extract showed significant (*p < 0.05, **p < 0.01) effect on hyperglycemia as compared to standard (Gliclazide) in OGTT. The plant extract showed efficient protection activity of pancreatic ß-cell from cell death in INS-1 cell line by significantly reduced (*p < 0.05, **p < 0.01) the levels alloxan-induced apoptosis and intracellular reactive oxygen species (ROS) accumulation. In addition, the plant extract showed a significant (*p < 0.05, **p < 0.01) effect on hyperglycemia by increases in percent of ß-cells present in each islet (45% - 60%) compared to the diabetic group. CONCLUSION: The result showed that C. crepidioides had ß-cell protection and antidiabetic activities in pancreatic ß-cell culture and Wistar albino rat.


Assuntos
Apoptose/efeitos dos fármacos , Asteraceae/química , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Células Secretoras de Insulina/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Feminino , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Ratos , Ratos Wistar
4.
Int J Mol Sci ; 18(2)2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28146110

RESUMO

Manganese (Mn) is an important trace element present in human body, which acts as an enzyme co-factor or activator in various metabolic reactions. While essential in trace amounts, excess levels of Mn in human brain can produce neurotoxicity, including idiopathic Parkinson's disease (PD)-like extrapyramidal manganism symptoms. This study aimed to investigate the protective role of polyphenolic extract of Euphorbia supina (PPEES) on Mn-induced neurotoxicity and the underlying mechanism in human neuroblastoma SKNMC cells and Sprague-Dawley (SD) male rat brain. PPEES possessed significant amount of total phenolic and flavonoid contents. PPEES also showed significant antioxidant activity in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and reducing power capacity (RPC) assays. Our results showed that Mn treatment significantly reduced cell viability and increased lactate dehydrogenase (LDH) level, which was attenuated by PPEES pretreatment at 100 and 200 µg/mL. Additionally, PPEES pretreatment markedly attenuated Mn-induced antioxidant status alteration by resolving the ROS, MDA and GSH levels and SOD and CAT activities. PPEES pretreatment also significantly attenuated Mn-induced mitochondrial membrane potential (ΔΨm) and apoptosis. Meanwhile, PPEES pretreatment significantly reversed the Mn-induced alteration in the GRP78, GADD34, XBP-1, CHOP, Bcl-2, Bax and caspase-3 activities. Furthermore, administration of PPEES (100 and 200 mg/kg) to Mn exposed rats showed improvement of histopathological alteration in comparison to Mn-treated rats. Moreover, administration of PPEES to Mn exposed rats showed significant reduction of 8-OHdG and Bax immunoreactivity. The results suggest that PPEES treatment reduces Mn-induced oxidative stress and neuronal cell loss in SKNMC cells and in the rat brain. Therefore, PPEES may be considered as potential treat-ment in Mn-intoxicated patients.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Euphorbia/química , Manganês/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Exsudatos de Plantas/farmacologia , Animais , Antioxidantes/química , Biomarcadores , Linhagem Celular , Chaperona BiP do Retículo Endoplasmático , Flavonoides/química , Humanos , Masculino , Manganês/toxicidade , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fenol/química , Exsudatos de Plantas/química , Ratos , Espécies Reativas de Oxigênio/metabolismo
5.
BMC Complement Altern Med ; 16(1): 316, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27561811

RESUMO

BACKGROUND: Curcumin, a major active component of turmeric, has previously been reported to alleviate liver damage. Here, we investigated the mechanism by which turmeric and curcumin protect the liver against carbon tetrachloride (CCl4)-induced injury in rats. We hypothesized that turmeric extract and curcumin protect the liver from CCl4-induced liver injury by reducing oxidative stress, inhibiting lipid peroxidation, and increasing glutathione peroxidase activation. METHODS: Chronic hepatic stress was induced by a single intraperitoneal injection of CCl4 (0.1 ml/kg body weight) into rats. Turmeric extracts and curcumin were administered once a day for 4 weeks at three dose levels (100, 200, and 300 mg/kg/day). We performed ALT and AST also measured of total lipid, triglyceride, cholesterol levels, and lipid peroxidation. RESULT: We found that turmeric extract and curcumin significantly protect against liver injury by decreasing the activities of serum aspartate aminotransferase and alanine aminotransferase and by improving the hepatic glutathione content, leading to a reduced level of lipid peroxidase. CONCLUSIONS: Our data suggest that turmeric extract and curcumin protect the liver from chronic CCl4-induced injury in rats by suppressing hepatic oxidative stress. Therefore, turmeric extract and curcumin are potential therapeutic antioxidant agents for the treatment of hepatic disease.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Curcumina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Animais , Tetracloreto de Carbono/toxicidade , Curcuma/química , Curcumina/química , Glutationa/análise , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Extratos Vegetais/química , Substâncias Protetoras/química , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
6.
Int J Mol Sci ; 17(3): 327, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26950115

RESUMO

The endoplasmic reticulum (ER) is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS). Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI)-endoplasmic reticulum oxidoreductin (ERO)-1, glutathione (GSH)/glutathione disuphide (GSSG), NADPH oxidase 4 (Nox4), NADPH-P450 reductase (NPR), and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases.


Assuntos
Estresse do Retículo Endoplasmático , Estresse Oxidativo , Dobramento de Proteína , Espécies Reativas de Oxigênio/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Cálcio/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Glutationa/metabolismo , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , NADPH Oxidase 4 , NADPH Oxidases/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia
7.
Foods ; 12(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37509819

RESUMO

Polyphenols and other compounds with antioxidant properties are found in plants and are one of the main antioxidants proven to reduce body weight and the risk of insulin resistance. Still, the mechanism behind the protective effects against obesity remains unclear. Thus, the study aims to assess the impact of flavonoid-rich arriheuk extract, a purple wheat extract, on mitochondrial function using 3T3-L1 adipocytes and investigate the molecular mechanism behind its protective effects against adipogenesis and lipolysis. The study findings strongly indicate that arriheuk significantly suppressed triglyceride levels and inhibited the expression of transcription factors like C/EBPα and PPARγ in 3T3-L1 adipocytes. Furthermore, treatment with arriheuk suppressed the expression of SREBP1c and FAS proteins linked to lipogenesis. In addition, treatment with arriheuk extract decreased the mRNA levels of adipogenic transcription factors, increased glycerol release, and inhibited adipocyte differentiation. Interestingly, the arriheuk-mediated PGC-1α expression triggered mitochondrial biogenesis by promoting the AMPK phosphorylation and SIRT1 expression in adipocytes. Also, arriheuk suppressed adipogenesis and elicited browning through the AMPK- and SIRT1-associated pathways. Collectively, these findings strongly suggest that arriheuk extract regulates browning in 3T3-L1 white adipocytes by triggering the AMPK/SIRT1 pathway, indicating the prospective applications of arriheuk as a functional food to control obesity.

8.
Sci Rep ; 13(1): 12861, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553432

RESUMO

Periodontitis is an infectious inflammation in the gums characterized by loss of periodontal ligaments and alveolar bone. Its persistent inflammation could result in tooth loss and other health issues. Ixeris dentata (IXD) and Lactobacillus gasseri media (LGM) demonstrated strong antioxidant activity, which may prevent oxidative and inflammatory periodontitis. Here, IXD and LGM extracts were investigated for antioxidative activity against oral discomfort and evaluated for their synergistic effect against oxidative and inflammatory periodontitis in a mouse model. IXD/LGM suppressed pro-inflammatory cytokines like interleukin (IL)-1ß, IL-6, and TNF-α. Additionally, it reduced pro-inflammatory mediators, nitric oxide, iNOS (inducible nitric oxide synthase), and COX-2 (cyclooxygenase-2) and enhanced AKT, Nrf2, and HO-1 activation. Similarly, IXD/LGM treatment elevated osteogenic proteins and mRNAs; alkaline phosphatase, collagen type 1 (COL1), osteopontin (OPN), and runt-related transcription factor 2 (RUNX2). Hematoxylin and Eosin (H&E) staining and micro-CT analysis confirm the positive impact of IXD/LGM on the periodontal structure and its associated inflammation. These findings demonstrate that IXD/LGM inhibits oxidative stress, periodontal inflammation, and its resultant alveolar bone loss in which Akt (also known as protein kinase B)-nuclear factor-erythroid 2-related factor 2 (Nrf2)-hemoxygenase-1 (HO-1) signaling is involved. Thus, IXD/LGM is a potential candidate against oxidative/inflammatory stress-associated periodontitis.


Assuntos
Asteraceae , Lactobacillus gasseri , Periodontite , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt , Fator 2 Relacionado a NF-E2/metabolismo , Periodontite/prevenção & controle , Inflamação , Antioxidantes , Asteraceae/metabolismo , Heme Oxigenase-1
9.
World J Mens Health ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37853537

RESUMO

PURPOSE: Benign prostate hyperplasia (BPH) is a common age-related chronic condition. Its pathogenesis involves androgen imbalance, inflammation, oxidative stress, and endoplasmic reticulum (ER) stress. This study aims to assess the protective effect of finasteride, a 5α-reductase inhibitor, against testosterone propionate (TP)-induced BPH in rats and explore its potential mechanism of action. MATERIALS AND METHODS: TP-induced BPH rats received either saline or finasteride (1 mg/kg) orally once a day for 7 weeks. Prior to sacrificing the animals, blood samples were collected. After sacrifice, prostate and tissue around the prostate were dissected from seminal vesical for further analysis. Body weight, prostate weight, dihydrotestosterone (DHT), 5α-reductase type 2 (5-AR2), and prostate-specific antigen (PSA) levels were measured. In addition, HIF-1α, VEGF, MMP-2 expressions in prostate, oxidative stress, inflammation, and ER stress responses were analyzed to understand the mechanism of action of finasteride. RESULTS: Finasteride administration inhibited prostate enlargement, DHT, 5-AR2, and PSA levels in BPH rats. Additionally, finasteride inhibited angiogenesis markers such as HIF-1α, VEGF, and MMP-2. Moreover, components of oxidative stress, inflammation, and ER stress responses were significantly regulated by finasteride treatment. CONCLUSIONS: This study suggests that finasteride prevents BPH-associated symptoms by regulating angiogenesis, reactive oxygen species, ER stress responses, and inflammation, another mechanism to explain the effect of the 5α-reductase against BPH.

10.
Nutrients ; 15(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771450

RESUMO

Ramie leaf (Boehmeria nivea L.) has been traditionally used to treat gynecological and bone-related disorders. This study aims to evaluate the effect of Ramie leaf extracts (RLE) against osteoporosis in ovariectomized (OVX) rats. Female SD rats aged seven weeks were randomly assigned into five OVX and a sham-operated (sham) group. OVX subgroups include OVX, vehicle-treated OVX group; E2, OVX with 100 µg/kg 17ß-estradiol; and RLE 0.25, 0.5, and 1, OVX rats treated with 0.25, 0.5, and 1 g/kg/day RLE, respectively. Two weeks into the bilateral ovariectomy, all the rats were orally administered with or without RLE daily for 12 weeks. OVX rats administered with RLE showed higher bone density, relatively low tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and lower reactive oxygen species (ROS) within bone tissues compared to vehicle-treated OVX rats. Furthermore, supplementation of RLE improved bone mineral density (BMD) and bone microstructure in the total femur. RLE prevented RANKL-induced osteoclast differentiation and expression of osteoclastogenesis-related genes such as Cal-R, MMP-9, cathepsin K, and TRAP in RANKL-induced RAW264.7 cells. Moreover, RLE administration lowered the intracellular ROS levels by reducing NADPH oxidase 1 (NOX-1) and 4-hydroxynonenal (4HNE). These results suggest that RLE alleviates bone mass loss in the OVX rats by inhibiting osteoclastogenesis, where reduced ROS and its associated signalings were involved.


Assuntos
Boehmeria , Osteoporose , Extratos Vegetais , Animais , Feminino , Ratos , Densidade Óssea , Osteoclastos , Osteoporose/prevenção & controle , Ovariectomia , Extratos Vegetais/farmacologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/farmacologia
11.
Aging (Albany NY) ; 15(23): 13608-13627, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38095615

RESUMO

Angelica gigas NAKAI (AG) is a popular traditional medicinal herb widely used to treat dyslipidemia owing to its antioxidant activity. Vascular disease is intimately linked to obesity-induced metabolic syndrome, and AG extract (AGE) shows beneficial effects on obesity-associated vascular dysfunction. However, the effectiveness of AGE against obesity and its underlying mechanisms have not yet been extensively investigated. In this study, 40 high fat diet (HFD) rats were supplemented with 100-300 mg/kg/day of AGE to determine its efficacy in regulating vascular dysfunction. The vascular relaxation responses to acetylcholine were impaired in HFD rats, while the administration of AGE restored the diminished relaxation pattern. Endothelial dysfunction, including increased plaque area, accumulated reactive oxygen species, and decreased nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) Ser1177 phosphorylation, were observed in HFD rats, whereas AGE reversed endothelial dysfunction and its associated biochemical signaling. Furthermore, AGE regulated endoplasmic reticulum (ER) stress and IRE1α sulfonation and its subsequent sirt1 RNA decay through controlling regulated IRE1α-dependent decay (RIDD) signaling, ultimately promoting NO bioavailability via the SIRT1-eNOS axis in aorta and endothelial cells. Independently, AGE enhanced AMPK phosphorylation, additionally stimulating SIRT1 and eNOS deacetylation and its associated NO bioavailability. Decursin, a prominent constituent of AGE, exhibited a similar effect in alleviating endothelial dysfunctions. These data suggest that AGE regulates dyslipidemia-associated vascular dysfunction by controlling ROS-associated ER stress responses, especially IRE1α-RIDD/sirt1 decay and the AMPK-SIRT1 axis.


Assuntos
Dislipidemias , Sirtuína 1 , Ratos , Animais , Sirtuína 1/metabolismo , Endorribonucleases/genética , Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Acetilação , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Obesidade/metabolismo , Óxido Nítrico/metabolismo
12.
Nutrients ; 15(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375680

RESUMO

Activating brown adipose tissue (BAT) and stimulating white adipose tissue (WAT) browning is a prospective obesity treatment method. Dietary components derived from plants are the most effective approach to activate BAT and promote WAT browning in rodents. This study investigated the synergistic effects of Panax ginseng (PG) and Diospyros kaki leaf (DKL) extract on adipocyte differentiation and browning, as well as the molecular mechanism underlying their beneficial effects. The administration of PG and DKL to HFD-induced obese mice significantly decreased body weight and epididymal and abdominal adipose tissue mass. In in vitro, PG inhibited the adipogenesis of 3T3-L1 adipocytes by regulating the expression of key adipogenic regulators, such as peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)-α. In contrast, DKL negligibly influenced the adipogenesis of 3T3-L1 adipocytes but greatly increased the protein expression of UCP-1, PGC-1α, and PPARα in BAT and/or WAT. Moreover, PG and DKL inhibited adipogenesis synergistically and activated white adipocyte browning via AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) pathways. These results suggest that a combination of PG and DKL regulates adipogenesis in white adipocytes and browning in brown adipocytes by activating AMPK/SIRT1 axis. The potential use of PG and DKL may represent an important strategy in obesity management that will be safer and more effective.


Assuntos
Diospyros , Panax , Camundongos , Animais , Adipócitos Brancos , Proteínas Quinases Ativadas por AMP/metabolismo , Panax/química , Sirtuína 1/metabolismo , Estudos Prospectivos , Adipogenia , PPAR gama/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Folhas de Planta/metabolismo , Células 3T3-L1
13.
Nutrients ; 15(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37686745

RESUMO

Mori Folium (Morus alba leaf, MF) and Mori Cortex Radicis (Morus alba root cortex, MR) have been studied for their anti-obesity effects by enhancing the browning process and inhibiting adipogenesis. However, important aspects of their protective mechanisms have not been thoroughly investigated, which could aid in developing functional food. Thus, this study aims to determine the synergistic effects of MF and MR against obesity and its associated mechanisms. In an in vitro cell culture model of brown adipocytes, a 1:1 mixture of MF and MR showed a synergistic effect on the expression of brown adipocyte-specific genes, including Ucp-1, Ppargc1a, Cbp/p300-interacting transactivator (Cited), Prdm16, Tbx1, and Fgf21 compared with either MF- or MR-treated conditions. Moreover, they demonstrated the involvement of cAMP and Ca2+ in induction of brown adipocyte-specific genes. In an in vivo model using HFD-fed mice, MF/MR significantly inhibited weight gain, plasma cholesterol, LDL, TG content, fat mass, and adipocyte size. Furthermore, MF/MR inhibited morphological alteration and the expressions of fatty acid synthesis genes such as Srebp1 and Fasn in the white adipose tissue. Thermogenesis genes were recovered in the brown adipose tissue with MF/MR supplementation, indicating that MF/MR regulated adipocytic dysmetabolism where AMPK signaling is involved. In conclusion, these results suggested that MF/MR regulates brown and beige adipocyte processes, providing one of the preventive functional food/herbal medicines against obesity and its associated metabolic diseases.


Assuntos
Adipócitos Marrons , Obesidade , Animais , Camundongos , Obesidade/genética , Aumento de Peso , Tecido Adiposo Marrom
14.
J Biol Chem ; 286(28): 24743-53, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21586565

RESUMO

Bax inhibitor-1 (BI-1) is an evolutionarily conserved protein that protects cells against endoplasmic reticulum (ER) stress while also affecting the ER stress response. In this study, we examined BI-1-induced regulation of the ER stress response as well as the control of the protein over cell death under ER stress. In BI-1-overexpressing cells (BI-1 cells), proteasome activity was similar to that of control cells; however, the lysosomal fraction of BI-1 cells showed sensitivity to degradation of BSA. In addition, areas and polygonal lengths of lysosomes were greater in BI-1 cells than in control cells, as assessed by fluorescence and electron microscopy. In BI-1 cells, lysosomal pH was lower than in control cells and lysosomal vacuolar H(+)-ATPase(V-ATPase), a proton pump, was activated, suggesting high H(+) uptake into lysosomes. Even when exposed to ER stress, BI-1 cells maintained high levels of lysosomal activities, including V-ATPase activity. Bafilomycin, a V-ATPase inhibitor, leads to the reversal of BI-1-induced regulation of ER stress response and cell death due to ER stress. In BI-1 knock-out mouse embryo fibroblasts, lysosomal activity and number per cell were relatively lower than in BI-1 wild-type cells. This study suggests that highly maintained lysosomal activity may be one of the mechanisms by which BI-1 exerts its regulatory effects on the ER stress response and cell death.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Morte Celular/fisiologia , Linhagem Celular Tumoral , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Inibidores Enzimáticos/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
15.
Biol Pharm Bull ; 35(11): 1907-13, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23123463

RESUMO

Hyperlipidemia is a major contributor for atherosclerosis and hypolipidemic drugs such as statin are highly prescribed to treat elevated lipid level in plasma. Rubus coreanus, which is widely cultivated in south eastern Asia, have been reported to show significant cholesterol lowering action in hyperlipidemic subjects. Our objective was to determine the cellular effect of Rubus coreanus extract (RCE) on cholesterol biosynthesis in human hepatic cells (HepG2) and to elucidate the molecular mechanism by which it causes change in cholesterol metabolism. RCE treatment lowered cholesterol biosynthesis as well as secretion from HepG2 cells. This effect was associated with lowering the release of apolipoproteins from hepatic cells. RCE treatment also showed an increase in phosphorylation of foxhead box protein 01 (FoXo-1) and 5-adenosine monophosphate-activated protein kinase (AMPK), thus lowering expression of phosphoenolpyruvate carboxykinase (PEPCK) and G6Pase, which might be a major pathway for cholesterol biosynthesis inhibition. Apart from this; RCE also lowered sterol regulatory element-binding protein-1 (SREBP-1) expression in HepG2 cells, showing a long term regulation of cholesterol biosynthesis activity. These results indicate that one of the anti-hyperlipidemic actions of RCE is due to inhibition of cholesterol biosynthesis in hepatic cells and provides first documentation of a hypolipidemic bio-molecular action of Rubus coreanus.


Assuntos
Colesterol/metabolismo , Ácidos Graxos/metabolismo , Hipolipemiantes/farmacologia , Extratos Vegetais/farmacologia , Rosaceae , Proteínas Quinases Ativadas por AMP/metabolismo , Apolipoproteína A-I/metabolismo , Apolipoproteínas B/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Glucose-6-Fosfatase/metabolismo , Células Hep G2 , Humanos , Hipolipemiantes/análise , Fígado/citologia , Fígado/metabolismo , Extratos Vegetais/análise , Proteínas Serina-Treonina Quinases/metabolismo , Solventes/química , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Água/química
16.
Biol Res ; 45(4): 403-10, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23558999

RESUMO

OBJECTIVES: Gastrodia elata (GE) Blume (Orchidaceae) has been previously known for its therapeutic benefits against neurodegenerative diseases. Microglial activation and death have been implicated in the pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease. In this study, GE and its pure components, gastrodin and 4-hydroxybenzyl alcohol (4HBA), were applied to ß-amyloid-induced BV2 mouse microglial cells. MATERIALS AND METHODS: Cell viability was assessed by the MTT assay and Western blotting was also performed. RESULTS: ß-amyloid-induced cell death was shown to be induced time- and dose-dependently. To examine the cell death mechanism, we confirmed the involvement of ER stress signaling. C/EBP homologous protein (CHOP), a pro-apoptotic ER stress protein, was expressed at high levels but glucose-regulated protein 78 (GRP78), an anti-apoptotic ER stress protein with chaperone activity, was only slightly affected by treatment with ß-amyloid. However, pretreatment with GE and its components inhibited the expression of CHOP but increased that of GRP78 in ß-amyloid-treated cells. This study also showed that a single treatment with GE extracts, gastrodin, or 4HBA induced the expression of GRP78, a marker for enhanced protein folding machinery, suggesting a protective mechanism for GE against ß-amyloid. CONCLUSIONS: This study reveals the protective effects of GE against ß-amyloid-induced cell death, possibly through the enhancement of protein folding machinery of a representative protein, GRP78, and the regulation of CHOP in BV2 mouse microglial cells.


Assuntos
Amiloide/farmacologia , Álcoois Benzílicos/farmacologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Gastrodia/química , Glucosídeos/farmacologia , Microglia/efeitos dos fármacos , Animais , Álcoois Benzílicos/isolamento & purificação , Chaperona BiP do Retículo Endoplasmático , Glucosídeos/isolamento & purificação , Camundongos
17.
Nutrients ; 14(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35011092

RESUMO

Obesity is a global health issue linked to the heightened risk of several chronic diseases. Rhus verniciflua (RV) is a traditional food supplement used for a range of pharmacological effects such as antitumor, antioxidant, α-glucosidase inhibitory effects, hepatitis, and arthritis. Despite the traditional medicinal values, scientific evidence for its application in obesity is inadequate and unclear. Thus, this investigation was designed to evaluate the anti-obesity effects of IBF-R, an RV extract, using a high-fat diet (HFD) model. The study has six groups: chow diet group; chow diet with 80 mg/kg IBF-R; HFD group; IBF-R group with 20, 40, and 80 mg/kg. IBF-R supplementation significantly regulated the weight gain than the HFD fed mice. Further, IBF-R supplementation lowered the expressions of adipogenic transcription factors such as SREBP-1c, C/EBPα, FAS, and PPAR-γ in white adipose tissue (WAT) of diet-induced obese mice. In addition, IBF-R supplementation reduced the lipogenic gene expression while enhancing genes was related to fatty acid oxidation. Obesity is linked to redox-based post-translational modifications (PTMs) of IRE1α such as S-nitrosylation, endoplasmic reticulum (ER) stress, and chronic metabolic inflammation. The administration of IBF-R inhibits these PTMs. Notably, IBF-R administration significantly enhanced the expression of AMPK and sirtuin 1 in WAT of HFD-fed mice. Together, these findings reveal the IRE1α S-nitrosylation-inflammation axis as a novel mechanism behind the positive implications of IBF-R on obesity. In addition, it lays a firm foundation for the development of Rhus verniciflua extract as a functional ingredient in the food and pharmaceutical industries.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Obesidade/metabolismo , Extratos Vegetais/administração & dosagem , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Rhus/química , Adipogenia/efeitos dos fármacos , Animais , Fármacos Antiobesidade , Dieta Hiperlipídica , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/etiologia , Aumento de Peso/efeitos dos fármacos
18.
Bioeng Transl Med ; 7(3): e10317, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176607

RESUMO

The goal of this study was to fabricate bioactive cell-laden biocomposites supplemented with bone-derived decellularized extracellular matrix (dECM) with calcium phosphate ceramic, and to assess the effect of the biocomponents on the osteogenic and odontogenic differentiation of human dental pulp stem cells (hDPSCs). By evaluating the rheological properties and selecting printing parameters, mechanically stable cell-laden 3D biocomposites with high initial cell-viability (>90%) and reasonable printability (≈0.9) were manufactured. The cytotoxicity of the biocomposites was evaluated via MTT assay and nuclei/F-actin fluorescent analyses, while the osteo/odontogenic differentiation of the hDPSCs was assessed using histological and immunofluorescent analyses and various gene expressions. Alkaline phosphate activity and alizarin red staining results indicate that the dECM-based biocomposites exhibit significantly higher osteogenic activities, including calcification, compared to the collagen-based biocomposites. Furthermore, immunofluorescence images and gene expressions demonstrated upregulation of dentin matrix acidic phosphoprotein-1 and dentin sialophosphoprotein in the dECM-based biocomposites, indicating acceleration of the odontogenic differentiation of hDPSCs in the printed biocomposites. The hDPSC-laden biocomposite was implanted into the subcutaneous region of mice, and the biocomposite afforded clear induction of osteo/odontogenic ectopic hard tissue formation 8 weeks post-transplantation. From these results, we suggest that the hDPSC-laden biocomposite is a promising biomaterial for dental tissue engineering.

19.
Nutrients ; 14(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458241

RESUMO

Gamma-aminobutyric acid (GABA) is a natural amino acid with antioxidant activity and is often considered to have therapeutic potential against obesity. Obesity has long been linked to ROS and ER stress, but the effect of GABA on the ROS-associated ER stress axis has not been thoroughly explored. Thus, in this study, the effect of GABA and fermented Curcuma longa L. extract enriched with GABA (FCLL-GABA) on the ROS-related ER stress axis and inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) sulfonation were examined with the HFD model to determine the underlying anti-obesity mechanism. Here, GABA and FCLL-GABA supplementations significantly inhibited the weight gain in HFD fed mice. The GABA and FCLL-GABA supplementation lowered the expressions of adipogenic transcription factors such as PPAR-γ, C/EBPα, FAS, and SREBP-1c in white adipose tissue (WAT) and liver from HFD-fed mice. The enhanced hyper-nutrient dysmetabolism-based NADPH oxidase (Nox) 4 and the resultant IRE1α sulfonation-RIDD-SIRT1 decay under HFD conditions were controlled with GABA and FCLL-GABA. Notably, GABA and FCLL-GABA administration significantly increased AMPK and sirtuin 1 (SIRT1) levels in WAT of HFD-fed mice. These significant observations indicate that ER-localized Nox4-induced IRE1α sulfonation results in the decay of SIRT1 as a novel mechanism behind the positive implications of GABA on obesity. Moreover, the investigation lays a firm foundation for the development of FCLL-GABA as a functional ingredient.


Assuntos
Dieta Hiperlipídica , Sirtuína 1 , Animais , Curcuma , Dieta Hiperlipídica/efeitos adversos , Endorribonucleases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , NADPH Oxidase 4 , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Extratos Vegetais/química , Proteínas Serina-Treonina Quinases , Espécies Reativas de Oxigênio , Sirtuína 1/metabolismo , Ácido gama-Aminobutírico/uso terapêutico
20.
Antioxid Redox Signal ; 37(4-6): 229-245, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35166127

RESUMO

Aims: The skeletal muscle maintains glucose disposal via insulin signaling and glucose transport. The progression of diabetes and insulin resistance is critically influenced by endoplasmic reticulum (ER) stress. d-Allulose, a low-calorie sugar substitute, has shown crucial physiological activities under conditions involving hyperglycemia and insulin resistance. However, the molecular mechanisms of d-allulose in the progression of diabetes have not been fully elucidated. Here, we evaluated the effect of d-allulose on hyperglycemia-associated ER stress responses in human skeletal myoblasts (HSkM) and db/db diabetic and high-fat diet-fed mice. Results: d-allulose effectively controlled glycemic markers such as insulin and hemoglobin A1c (HbA1c), showing anti-diabetic effects by inhibiting the disruption of insulin receptor substrate (IRS)-1 tyrosine phosphorylation and glucose transporter 4 (GLUT4) expression, in which the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt) pathway is involved. The levels of glucose dysmetabolism-based NADPH oxidase, such as NADPH-dependent oxidoreductase (Nox) 4, were highly increased, and their interaction with IRE1α and the resultant sulfonation-regulated IRE1-dependent decay (RIDD)-Sirt1 decay were also highly increased under diabetic conditions, which were controlled with d-allulose treatment. Skeletal muscle cells grown with a high glucose medium supplemented with d-allulose showed controlled IRE1α sulfonation-RIDD-Sirt1 decay, in which Nox4 was involved. Innovation and Conclusion: The study observations indicate that d-allulose contributes to the muscular glucose disposal in the diabetic state where ER-localized Nox4-induced IRE1α sulfonation results in the decay of Sirt1, a core factor for controlling glucose metabolism. Antioxid. Redox Signal. 37, 229-245.


Assuntos
Diabetes Mellitus , Endorribonucleases , Hiperglicemia , Resistência à Insulina , Proteínas Serina-Treonina Quinases , Sirtuína 1 , Animais , Diabetes Mellitus/metabolismo , Endorribonucleases/metabolismo , Frutose , Glucose/metabolismo , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Insulina/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa