Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Biotechnol Bioeng ; 121(3): 931-941, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38013500

RESUMO

Histone deacetylase inhibitors (iHDACs) have been extensively studied as enhancers of therapeutic protein production in recombinant Chinese hamster ovary (CHO) (rCHO) cell cultures. However, the addition of iHDACs reduces the viable cell concentration (VCC) in rCHO cell cultures, thereby reducing their potential to enhance therapeutic protein production. To mitigate the negative effects of iHDACs on VCC, screening using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-based single-gene knockout (KO) library in rCHO cells was performed in the presence of CI994, a member of iHDACs, and 10 potential KO genes that enhanced the VCC of CI994-treated rCHO cells were identified. Among these, Bcor was validated as a promising KO target that improved VCC without negatively affecting the specific productivity in the presence of CI994. Bcor KO increased the VCC and therapeutic protein concentrations in both batch and fed-batch cultures in the presence of CI994. Taken together, these findings highlight the potential of the whole-genome CRISPR/Cas9-based single-gene KO cell library to identify KO target genes for the development of iHDAC-resistant rCHO cells for enhanced therapeutic protein production.


Assuntos
Sistemas CRISPR-Cas , Inibidores de Histona Desacetilases , Cricetinae , Animais , Cricetulus , Células CHO , Inibidores de Histona Desacetilases/farmacologia , Proliferação de Células
2.
Appl Microbiol Biotechnol ; 108(1): 224, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376550

RESUMO

The occurrence of autophagy in recombinant Chinese hamster ovary (rCHO) cell culture has attracted attention due to its effects on therapeutic protein production. Given the significance of glycosylation in therapeutic proteins, this study examined the effects of autophagy-inhibiting chemicals on sialylation of Fc-fusion glycoproteins in rCHO cells. Three chemical autophagy inhibitors known to inhibit different stages were separately treated with two rCHO cell lines that produce the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44. All autophagy inhibitors significantly decreased the sialylation of Fc-fusion glycoprotein in both cell lines. The decrease in sialylation of Fc-fusion glycoprotein is unlikely to be attributed to the release of intracellular enzymes, given the high cell viability and low activity of extracellular sialidases. Interestingly, the five intracellular nucleotide sugars remained abundant in cells treated with autophagy inhibitors. In the mRNA expression profiles of 27 N-glycosylation-related genes using the NanoString nCounter system, no significant differences in gene expression were noted. With the positive effect of supplementing nucleotide sugar precursors on sialylation, attempts were made to enhance the levels of intracellular nucleotide sugars by supplying these precursors. The addition of nucleotide sugar precursors to cultures treated with inhibitors successfully enhanced the sialylation of Fc-fusion glycoproteins compared to the control culture. This was particularly evident under mild stress conditions and not under relatively severe stress conditions, which were characterized by a high decrease in sialylation. These results suggest that inhibiting autophagy in rCHO cell culture decreases sialylation of Fc-fusion glycoprotein by constraining the availability of intracellular nucleotide sugars. KEY POINTS: •  The autophagy inhibition in rCHO cell culture leads to a significant reduction in the sialylation of Fc-fusion glycoprotein. •  The pool of five intracellular nucleotide sugars remained highly abundant in cells treated with autophagy inhibitors. •  Supplementation of nucleotide sugar precursors effectively restores decreased sialylation, particularly under mild stress conditions but not in relatively severe stress conditions.


Assuntos
Autofagia , Glicoproteínas , Animais , Cricetinae , Células CHO , Cricetulus , Glicoproteínas/genética , Nucleotídeos , Açúcares
3.
Metab Eng ; 80: 33-44, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37709006

RESUMO

High-level expression of recombinant proteins in mammalian cells has long been an area of interest. Inefficient transcription machinery is often an obstacle in achieving high-level expression of recombinant proteins in mammalian cells. Synthetic promoters have been developed to improve the transcription efficiency, but have achieved limited success due to the limited availability of transcription factors (TFs). Here, we present a TF-engineering approach to mitigate the transcriptional bottlenecks of recombinant proteins. This includes: (i) identification of cAMP response element binding protein (CREB) as a candidate TF by searching for TFs enriched in the cytomegalovirus (CMV) promoter-driven high-producing recombinant Chinese hamster ovary (rCHO) cell lines via transcriptome analysis, (ii) confirmation of transcriptional limitation of active CREB in rCHO cell lines, and (iii) direct activation of the transgene promoter by expressing constitutively active CREB at non-cytotoxic levels in rCHO cell lines. With the expression of constitutively active VP16-CREB, the production of therapeutic proteins, such as monoclonal antibody and etanercept, in CMV promoter-driven rCHO cell lines was increased up to 3.9-fold. VP16-CREB was also used successfully with synthetic promoters containing cAMP response elements. Taken together, this strategy to introduce constitutively active TFs into cells is a useful means of overcoming the transcriptional limitations in recombinant mammalian cells.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Infecções por Citomegalovirus , Cricetinae , Animais , Humanos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Etoposídeo , Células CHO , Cricetulus , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica , Ativação Transcricional
4.
Metab Eng ; 80: 66-77, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37709005

RESUMO

Chinese hamster ovary (CHO) cells are the preferred mammalian host cells for therapeutic protein production that have been extensively engineered to possess the desired attributes for high-yield protein production. However, empirical approaches for identifying novel engineering targets are laborious and time-consuming. Here, we established a genome-wide CRISPR/Cas9 screening platform for CHO-K1 cells with 111,651 guide RNAs (gRNAs) targeting 21,585 genes using a virus-free recombinase-mediated cassette exchange-based gRNA integration method. Using this platform, we performed a positive selection screening under hyperosmotic stress conditions and identified 180 genes whose perturbations conferred resistance to hyperosmotic stress in CHO cells. Functional enrichment analysis identified hyperosmotic stress responsive gene clusters, such as tRNA wobble uridine modification and signaling pathways associated with cell cycle arrest. Furthermore, we validated 32 top-scoring candidates and observed a high rate of hit confirmation, demonstrating the potential of the screening platform. Knockout of the novel target genes, Zfr and Pnp, in monoclonal antibody (mAb)-producing recombinant CHO (rCHO) cells and bispecific antibody (bsAb)-producing rCHO cells enhanced their resistance to hyperosmotic stress, thereby improving mAb and bsAb production. Overall, the collective findings demonstrate the value of the screening platform as a powerful tool to investigate the functions of genes associated with hyperosmotic stress and to discover novel targets for rational cell engineering on a genome-wide scale in CHO cells.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Cricetinae , Animais , Cricetulus , Células CHO , Genoma , Anticorpos Monoclonais
5.
Biotechnol Bioeng ; 120(4): 1159-1166, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36562657

RESUMO

The dominant method for generating Chinese hamster ovary (CHO) cell lines that produce high titers of biotherapeutic proteins utilizes selectable markers such as dihydrofolate reductase (Dhfr) or glutamine synthetase (Gs), alongside inhibitory compounds like methotrexate or methionine sulfoximine, respectively. Recent work has shown the importance of asparaginase (Aspg) for growth in media lacking glutamine-the selection medium for Gs-based selection systems. We generated a Gs/Aspg double knockout CHO cell line and evaluated its utility as a novel dual selectable system via co-transfection of Gs-Enbrel and Aspg-Enbrel plasmids. Using the same selection conditions as the standard Gs system, the resulting cells from the Gs/Aspg dual selection showed substantially improved specific productivity and titer compared to the standard Gs selection method, however, with reduced growth rate and viability. Following adaptation in the selection medium, the cells improved viability and growth while still achieving ~5-fold higher specific productivity and ~3-fold higher titer than Gs selection alone. We anticipate that with further optimization of culture medium and selection conditions, this approach would serve as an effective addition to workflows for the industrial production of recombinant biotherapeutics.


Assuntos
Asparaginase , Glutamato-Amônia Ligase , Cricetinae , Animais , Cricetulus , Células CHO , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Glutamina/farmacologia , Etanercepte , Proteínas Recombinantes/genética
6.
Appl Microbiol Biotechnol ; 107(9): 2855-2870, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36947192

RESUMO

Polyamines such as putrescine (PUT), spermidine (SPD), and spermine (SPM) are amine group-containing biomolecules that regulate multiple intracellular functions such as proliferation, differentiation, and stress response in mammalian cells. Although these biomolecules can be generated intracellularly, lack of polyamine-synthesizing activity has occasionally been reported in a few mammalian cell lines such as Chinese hamster ovary (CHO)-K1; thus, polyamine supplementation in serum-free media is required to support cell growth and production. In the present study, the effects of biogenic polyamines PUT, SPD, and SPM in media on cell growth, production, metabolism, and antibody quality were explored in cultures of antibody-producing CHO-K1 cells. Polyamine withdrawal from media significantly suppressed cell growth and production. On the other hand, enhanced culture performance was achieved in polyamine-containing media conditions in a dose-dependent manner regardless of polyamine type. In addition, in polyamine-deprived medium, distinguishing metabolic features, such as enriched glycolysis and suppressed amino acid consumption, were observed and accompanied by higher heterogeneity of antibody quality compared with the optimal concentration of polyamines. Furthermore, an excessive concentration of polyamines negatively affected culture performance as well as antibody quality. Hence, the results suggest that polyamine-related metabolism needs to be further investigated and polyamines in cell growth media should be optimized as a controllable parameter in CHO cell culture bioprocessing. KEY POINTS: • Polyamine supplementation enhanced cell growth and production in a dose-dependent manner • Polyamine type and concentration in the media affected mAb quality • Optimizing polyamines in the media is suggested in CHO cell bioprocessing.


Assuntos
Poliaminas , Espermidina , Cricetinae , Animais , Poliaminas/farmacologia , Poliaminas/metabolismo , Células CHO , Cricetulus , Espermidina/metabolismo , Putrescina/farmacologia , Putrescina/metabolismo , Espermina/metabolismo , Espermina/farmacologia , Proliferação de Células
7.
Metab Eng ; 72: 247-258, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35398513

RESUMO

Targeted engineering of mammalian cells has been widely attempted to ensure the efficient production of therapeutic proteins with proper quality during bioprocesses. However, the identification of novel targets for cell engineering is labor-intensive and has not yet been fully substantiated. Here, we established a CRISPR/Cas9 library screening platform in human embryonic kidney (HEK293) cells based on guide RNA integration mediated by recombinase-mediated cassette exchange (RMCE) to interrogate gene function in a high-throughput manner. This platform was further advanced using a nuclear localization signal-tagged recombinase that increased RMCE efficiency by 4.8-fold. Using this platform, we identified putative target genes, such as CDK8, GAS2L1, and GSPT1, and their perturbation confers resistance to hyperosmotic stress that inhibits cell growth and induces apoptosis. Knockout of these genes in monoclonal antibody (mAb)-producing recombinant HEK293 (rHEK293) cells enhanced resistance to hyperosmotic stress-induced apoptosis, resulting in enhanced mAb production. In particular, GSPT1-knockout yielded 2.3-fold increase in maximum mAb concentration in fed-batch culture where hyperosmotic stress naturally occurs due to nutrient feeding. Taken together, this streamlined screening platform allows the identification of novel targets associated with hyperosmotic stress, enabling the development of stress-resistant cells producing recombinant proteins.


Assuntos
Sistemas CRISPR-Cas , Proteínas Recombinantes , Recombinases , Anticorpos Monoclonais , Células HEK293 , Humanos , Rim/metabolismo , Pressão Osmótica , Proteínas Recombinantes/biossíntese , Recombinases/genética
8.
Metab Eng ; 69: 73-86, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34775077

RESUMO

With the advent of novel therapeutic proteins with complex structures, cellular bottlenecks in secretory pathways have hampered the high-yield production of difficult-to-express (DTE) proteins in CHO cells. To mitigate their limited secretory capacity, recombinant CHO (rCHO) cells were engineered to express Blimp1, a master regulator orchestrating B cell differentiation into professional secretory plasma cells, using the streamlined CRISPR/Cas9-based recombinase-mediated cassette exchange landing pad platform. The expression of Blimp1α or Blimp1ß in rCHO cells producing DTE recombinant human bone morphogenetic protein-4 (rhBMP-4) increased specific rhBMP-4 productivity (qrhBMP-4). However, since Blimp1α expression suppressed cell growth more significantly than Blimp1ß expression, only Blimp1ß expression enhanced rhBMP-4 yield. In serum-free suspension culture, Blimp1ß expression significantly increased the rhBMP-4 concentration (>3-fold) and qrhBMP-4 (>4-fold) without significant increase in hBMP-4 transcript levels. In addition, Blimp1ß expression facilitated mature rhBMP-4 secretion by active proteolytic cleavage in the secretory pathway. Transcriptomic profiling (RNA-seq) revealed global changes in gene expression patterns that promote protein processing in secretory organelles. In-depth integrative analysis of the current RNA-seq data, public epigenome/RNA-seq data, and in silico analysis identified 45 potential key regulators of Blimp1 that are consistently up- or down-regulated in Blimp1ß expressing rCHO cells and plasma cells. Blimp1ß expression also enhanced the production of easy-to-express monoclonal antibodies (mAbs) and modulated the expression of key regulators in rCHO cells producing mAb. Taken together, the results show that controlled expression of Blimp1ß improves the production capacity of rCHO cells by regulating secretory machinery and suggest new opportunities for engineering promising targets that are resting in CHO cells.


Assuntos
Plasmócitos , Fatores de Transcrição , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Plasmócitos/metabolismo , Proteínas Recombinantes , Fatores de Transcrição/genética
9.
Biotechnol Bioeng ; 119(3): 820-831, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34961935

RESUMO

Small molecule epigenetic modulators that modify epigenetic states in cells are useful tools for regulating gene expression by inducing chromatin remodeling. To identify small molecule epigenetic modulators that enhance recombinant protein expression in Chinese hamster ovary (CHO) cells, we examined eight histone deacetylase inhibitors (iHDACs) and six DNA methyltransferase inhibitors as chemical additives in recombinant CHO (rCHO) cell cultures. Among these, a benzamide-based iHDAC, CI994, was the most effective in increasing monoclonal antibody (mAb) production. Despite suppressing cell growth, the addition of CI994 to mAb-expressing GSR cell cultures at 10 µM resulted in a 2.3-fold increase in maximum mAb concentration due to a 3.0-fold increase in specific mAb productivity (qmAb ). CI994 increased mAb messenger RNA levels and histone H3 acetylation in GSR cells, and chromatin immunoprecipitation-quantitative polymerase chain reaction analysis revealed that CI994 significantly increased the histone H3 acetylation level at the cytomegalovirus promoter driving mAb gene expression, indicating that chromatin remodeling in the promoter region results in enhanced mAb gene transcription and qmAb . Similar beneficial effects of CI994 on mAb production were observed in mAb-expressing CS13-1.00 cells. Collectively, our findings indicate that CI994 increases mAb production in rCHO cell cultures by chromatin remodeling resulting from acetylation of histones in the mAb gene promoter.


Assuntos
Formação de Anticorpos , Técnicas de Cultura de Células , Acetilação , Animais , Células CHO , Cricetinae , Cricetulus , Epigênese Genética
10.
Appl Microbiol Biotechnol ; 106(9-10): 3571-3582, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35581431

RESUMO

Optimizing appropriate signal peptides in mammalian cell-based protein production is crucial given that most recombinant proteins produced in mammalian cells are thought to be secreted proteins. Until now, most studies on signal peptide in mammalian cells have replaced native signal peptides with well-known heterologous signal peptides and bioinformatics-based signal peptides. In the present study, we successfully established an in vitro screening system for synthetic signal peptide in CHO cells by combining a degenerate codon-based oligonucleotides library, a site-specific integration system, and a FACS-based antibody detection assay. Three new signal peptides were screened using this new screening system, confirming to have structural properties as signal peptides by the SignalP web server, a neural network-based algorithm that quantifies the signal peptide-ness of amino acid sequences. The novel signal peptides selected in this study increased Fc-fusion protein production in CHO cells by increasing specific protein productivity, whereas they did not negatively affect cell growth. Particularly, the SP-#149 clone showed the highest qp, 0.73 ± 0.01 pg/cell/day from day 1 to day 4, representing a 1.47-fold increase over the native signal peptide in a serum-free suspension culture mode. In addition, replacing native signal peptide with the novel signal peptides did not significantly affect sialylated N-glycan formation, N-terminal cleavage pattern, and biological function of Fc-fusion protein produced in CHO cells. The overall results indicate the utility of a novel in vitro screening system for synthetic signal peptide for mammalian cell-based protein production. KEY POINTS: • An in vitro screening system for synthetic signal peptide in mammalian cells was established • This system combined a degenerate codon-based library, site-specific integration, and a FACS-based detection assay • The novel signal peptides selected in this study could increase Fc-fusion protein production in mammalian cells.


Assuntos
Peptídeos , Sinais Direcionadores de Proteínas , Animais , Células CHO , Cricetinae , Cricetulus , Peptídeos/química , Peptídeos/genética , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Metab Eng ; 66: 114-122, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33813034

RESUMO

Media and feed optimization have fueled many-fold improvements in mammalian biopharmaceutical production, but genome editing offers an emerging avenue for further enhancing cell metabolism and bioproduction. However, the complexity of metabolism, involving thousands of genes, makes it unclear which engineering strategies will result in desired traits. Here we present a comprehensive pooled CRISPR screen for CHO cell metabolism, including ~16,000 gRNAs against ~2500 metabolic enzymes and regulators. Using this screen, we identified a glutamine response network in CHO cells. Glutamine is particularly important since it is often over-fed to drive increased TCA cycle flux, but toxic ammonia may accumulate. With the screen we found one orphan glutamine-responsive gene with no clear connection to our network. Knockout of this novel and poorly characterized lipase, Abhd11, substantially increased growth in glutamine-free media by altering the regulation of the TCA cycle. Thus, the screen provides an invaluable targeted platform to comprehensively study genes involved in any metabolic trait, and elucidate novel regulators of metabolism.


Assuntos
Sistemas CRISPR-Cas , Glutamina , Animais , Células CHO , Cricetinae , Cricetulus , Edição de Genes , Glutamina/genética , Glutamina/metabolismo
12.
Appl Microbiol Biotechnol ; 105(1): 67-76, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33191460

RESUMO

Our previous work showed that there is a limitation in the use of dihydrofolate reductase (dhfr)/methotrexate (MTX)-mediated gene amplification systems in dhfr-non-deficient HEK293 cells, as endogenous dhfr may interfere with the amplification process. In the present study, we successfully generated Epstein-Barr virus nuclear antigen-1 (EBNA-1)-amplified HEK293 cells in a dhfr-non-deficient HEK293 cell background using a single-plasmid vector-based gene amplification system with shRNA targeting the 3'-UTR of endogenous dhfr. The introduction of this shRNA efficiently downregulated the expression of endogenous dhfr in the HEK293 cells without affecting exogenous dhfr expression. The downregulation of endogenous dhfr improved the efficiency of EBNA-1 amplification, as evidenced by a comparison with the amplification extent in cells lacking shRNA expression at the same MTX concentration. The EBNA-1 expression levels from the EBNA-1-amplified clones selected in this study were higher than those obtained from EBNA-1-amplified clones that were generated using the conventional amplification in our previous study. Consistent with previous studies, EBNA-1 amplification improved the production of the Fc-fusion protein through a specific protein productivity (qp)-enhancing effect, rather than by improving cell growth or transfection efficiency. In addition, the N-glycan profiles in the Fc-fusion protein produced using this transient gene expression (TGE) system were not affected by EBNA-1 amplification. These results indicate the potential utility of EBNA-1-amplified mammalian cells, developed using a single-plasmid vector-based gene amplification system, for efficient protein production. KEY POINTS: • EBNA-1-amplified HEK293 cells were established using gene amplification system. • EBNA-1 amplification in TGE system can increase the Fc-fusion protein productivity. • EBNA-1 amplification does not affect the N-glycan profile in the Fc-fusion protein.


Assuntos
Infecções por Vírus Epstein-Barr , Amplificação de Genes , Animais , Células CHO , Cricetinae , Antígenos Nucleares do Vírus Epstein-Barr/genética , Expressão Gênica , Células HEK293 , Herpesvirus Humano 4/genética , Humanos , Metotrexato , Plasmídeos/genética , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
13.
Metab Eng ; 57: 182-192, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785386

RESUMO

Sialic acid, a terminal monosaccharide present in N-glycans, plays an important role in determining both the in vivo half-life and the therapeutic efficacy of recombinant glycoproteins. Low sialylation levels of recombinant human erythropoietin (rhEPO) in recombinant Chinese hamster ovary (rCHO) cell cultures are considered a major obstacle to the production of rhEPO in fed-batch mode. This is mainly due to the accumulation of extracellular sialidases released from the cells. To overcome this hurdle, three sialidase genes (Neu1, 2, and 3) were initially knocked-out using the CRISPR/Cas9-mediated large deletion method in the rhEPO-producing rCHO cell line. Unlike wild type cells, sialidase knockout (KO) clones maintained the sialic acid content and proportion of tetra-sialylated rhEPO throughout fed-batch cultures without exhibiting a detrimental effect with respect to cell growth and rhEPO production. Additional KO of two pro-apoptotic genes, BAK and BAX, in sialidase KO clones (5X KO clones) further improved rhEPO production without any detrimental effect on sialylation. On day 10 in fed-batch cultures, the 5X KO clones had 1.4-times higher rhEPO concentration and 3.0-times higher sialic acid content than wild type cells. Furthermore, the proportion of tetra-sialylated rhEPO on day 10 in fed-batch cultures was 42.2-44.3% for 5X KO clones while it was only 2.2% for wild type cells. Taken together, KO of sialidase and pro-apoptotic genes in rCHO cells is a useful tool for producing heavily sialylated glycoproteins such as rhEPO in fed-batch mode.


Assuntos
Fator de Indução de Apoptose/genética , Técnicas de Cultura Celular por Lotes , Eritropoetina , Técnicas de Silenciamento de Genes , Neuraminidase/genética , Animais , Células CHO , Cricetulus , Eritropoetina/biossíntese , Eritropoetina/genética , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
14.
Biotechnol Bioeng ; 117(2): 593-598, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31631317

RESUMO

Chinese hamster ovary (CHO) cells are the preferred workhorse for the biopharmaceutical industry, and CRISPR/Cas9 has proven powerful for generating targeted gene perturbations in CHO cells. Here, we expand the CRISPR engineering toolbox with CRISPR activation (CRISPRa) to increase transcription of endogenous genes. We successfully increased transcription of Mgat3 and St6gal1, and verified their activity on a functional level by subsequently detecting that the appropriate glycan structures were produced. This study demonstrates that CRISPRa can make targeted alterations of CHO cells for desired phenotypes.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Glicosiltransferases/genética , Animais , Células CHO , Cricetinae , Cricetulus , Glicosilação , Fenótipo , Polissacarídeos/análise , Polissacarídeos/química
15.
Metab Eng ; 52: 57-67, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30447330

RESUMO

A Chinese hamster ovary (CHO) cell line producing recombinant human bone morphogenetic protein-4 (rhBMP-4) (CHO-BMP-4), which expresses essential components of BMP signal transduction, underwent autocrine BMP-4 signaling. RNA seq analysis on CHO host cells (DG44) treated with rhBMP-4 (20 µg/mL) suggested that rhBMP-4 induced signaling in CHO cells could be a critical factor in limiting rhBMP-4 production and should be removed to improve rhBMP-4 production in recombinant CHO (rCHO) cells. The inhibition of autocrine BMP signaling in CHO-BMP-4 cells by the addition of LDN-193189, a chemical inhibitor of BMP receptor type I, significantly increased the mRNA expression levels of rhBMP-4. To establish BMP signaling-free host cells, a BMP receptor, the BMPRIA or BMPRII gene in DG44 cells, was knocked out using CRISPR/Cas9 gene-editing technology. Using three different knockout (KO) host cell lines as well as a DG44 wild-type (wt) cell line, rCHO cell clones producing rhBMP-4 were generated by a stepwise selection with increasing methotrexate concentrations. KO-derived clones showed a significantly higher maximum rhBMP-4 concentration than wt-derived clones in both batch and fed-batch cultures. Unlike wt-derived clones, KO-derived cell clones were able to produce higher amounts of hBMP-4 transcripts and proteins in the stationary phase of growth and did not experience growth inhibition induced by rhBMP-4. The mean maximum rhBMP-4 concentration of KO host-derived clones was approximately 2.4-fold higher than that of wt-derived clones (P < 0.05). Taken together, the disruption of BMP signaling in CHO cells by knocking out the BMP receptor significantly improved rhBMP-4 production.


Assuntos
Proteína Morfogenética Óssea 4/biossíntese , Proteína Morfogenética Óssea 4/genética , Receptores de Proteínas Morfogenéticas Ósseas/genética , Animais , Antimetabólitos/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Células CHO , Sistemas CRISPR-Cas , Cricetinae , Cricetulus , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Homeostase , Metotrexato/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteínas Recombinantes
16.
Metab Eng ; 52: 143-152, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513349

RESUMO

Recombinant Chinese hamster ovary (CHO) cells are able to provide biopharmaceuticals that are essentially free of human viruses and have N-glycosylation profiles similar, but not identical, to humans. Due to differences in N-glycan moieties, two members of the serpin superfamily, alpha-1-antitrypsin (A1AT) and plasma protease C1 inhibitor (C1INH), are currently derived from human plasma for treating A1AT and C1INH deficiency. Deriving therapeutic proteins from human plasma is generally a cost-intensive process and also harbors a risk of transmitting infectious particles. Recombinantly produced A1AT and C1INH (rhA1AT, rhC1INH) decorated with humanized N-glycans are therefore of clinical and commercial interest. Here, we present engineered CHO cell lines producing rhA1AT or rhC1INH with fully humanized N-glycosylation profiles. This was achieved by combining CRISPR/Cas9-mediated disruption of 10 gene targets with overexpression of human ST6GAL1. We were able to show that the N-linked glyco-structures of rhA1AT and rhC1INH are homogeneous and similar to the structures obtained from plasma-derived A1AT and C1INH, marketed as Prolastin®-C and Cinryze®, respectively. rhA1AT and rhC1INH produced in our glyco-engineered cell line showed no detectable differences to their plasma-purified counterparts on SDS-PAGE and had similar enzymatic in vitro activity. The work presented here shows the potential of expanding the glyco-engineering toolbox for CHO cells to produce a wider variety of glycoproteins with fully humanized N-glycan profiles. We envision replacing plasma-derived A1AT and C1INH with recombinant versions and thereby decreasing our dependence on human donor blood, a limited and possibly unsafe protein source for patients.


Assuntos
Células CHO/metabolismo , Proteína Inibidora do Complemento C1/biossíntese , Engenharia Metabólica/métodos , alfa 1-Antitripsina/biossíntese , Animais , Antígenos CD/biossíntese , Antígenos CD/genética , Sistemas CRISPR-Cas , Cricetinae , Cricetulus , Glicosilação , Humanos , Proteínas Recombinantes/biossíntese , Sialiltransferases/biossíntese , Sialiltransferases/genética
17.
Biotechnol Bioeng ; 116(5): 1006-1016, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30636290

RESUMO

Acidic Golgi pH plays an important role in protein glycosylation, one of the critical quality attributes of therapeutic proteins. To determine the intracellular Golgi pH during culture, stable Chinese hamster ovary (CHO) cell clones expressing pHluorin2, a ratiometric pH-sensitive fluorescent protein (FP), in the cis- and trans-Golgi, were constructed by fusing pHluorin2 with specific targeting proteins, acetylglucosaminyltransferase, and a galactosyltransferase, respectively. Stable CHO cell clones expressing pHluorin2 in the cytoplasm were also constructed. The subcellular localization of FPs was confirmed by immunofluorescence analysis. Live-cell imaging revealed that the intracellular pH (pHi) of clones expressing the ratiometric pH-sensitive FPs converged to a specific pH range (cis-Golgi: 6.4-6.5; trans-Golgi: 5.9-6.0; and cytoplasm: 7.1-7.2). The pHi was successfully evaluated in various culture conditions. Although culture pH was maintained at 7.2 in a bioreactor, the Golgi pH increased with culture time. Elevated ammonia concentration and osmolality were partially responsible for the increased Golgi pH during bioreactor cultures. Taken together, the application of ratiometric pH-sensitive FPs in monitoring the Golgi pH of CHO cells during culture provides a new perspective to improve protein glycosylation through pHi control.


Assuntos
Reatores Biológicos , Complexo de Golgi/metabolismo , Proteínas Luminescentes/biossíntese , Animais , Células CHO , Cricetinae , Cricetulus , Glicosilação , Concentração de Íons de Hidrogênio , Transporte Proteico , Proteínas Recombinantes/biossíntese
18.
Biotechnol Bioeng ; 116(7): 1813-1819, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883679

RESUMO

Chinese hamster ovary (CHO) cells are widely used for biopharmaceutical protein production. One challenge limiting CHO cell productivity is apoptosis stemming from cellular stress during protein production. Here we applied CRISPR interference (CRISPRi) to downregulate the endogenous expression of apoptotic genes Bak, Bax, and Casp3 in CHO cells. In addition to reduced apoptosis, mitochondrial membrane integrity was improved and the caspase activity was reduced. Moreover, we optimized the CRISPRi system to enhance the gene repression efficiency in CHO cells by testing different repressor fusion types. An improved Cas9 repressor has been identified by applying C-terminal fusion of a bipartite repressor domain, KRAB-MeCP2, to nuclease-deficient Cas9. These results collectively demonstrate that CHO cells can be rescued from cell apoptosis by targeted gene repression using the CRISPRi system.


Assuntos
Apoptose/genética , Sistemas CRISPR-Cas , Caspase 3 , Marcação de Genes , Proteína Killer-Antagonista Homóloga a bcl-2 , Proteína X Associada a bcl-2 , Animais , Células CHO , Proteína 9 Associada à CRISPR/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Cricetulus , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
19.
Biotechnol Bioeng ; 115(5): 1367-1372, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29359789

RESUMO

Previously, it was inferred that a high glutamine synthetase (GS) activity in human embryonic kidney (HEK) 293E cells results in elevated resistance to methionine sulfoximine (MSX) and consequently hampers GS-mediated gene amplification and selection by MSX. To overcome this MSX resistance in HEK293E cells, a GS-knockout HEK293E cell line was generated using the CRISPR/Cas9 system to target the endogenous human GS gene. The GS-knockout in the HEK293E cell line (RK8) was confirmed by Western blot analysis of GS and by observation of glutamine-dependent growth. Unlike the wild type HEK293E cells, the RK8 cells were successfully used as host cells to generate a recombinant HEK293E cell line (rHEK293E) producing a monoclonal antibody (mAb). When the RK8 cells were transfected with the GS expression vector containing the mAb gene, rHEK293E cells producing the mAb could be selected in the absence as well as in the presence of MSX. The gene copies and mRNA expression levels of the mAb in rHEK293E cells were also quantified using qRT-PCR. Taken together, the GS-knockout HEK293E cell line can be used as host cells to generate stable rHEK293E cells producing a mAb through GS-mediated gene selection in the absence as well as in the presence of MSX.


Assuntos
Anticorpos Monoclonais/metabolismo , Técnicas de Inativação de Genes , Glutamato-Amônia Ligase/deficiência , Proteínas Recombinantes/metabolismo , Western Blotting , Glutamato-Amônia Ligase/análise , Células HEK293 , Humanos
20.
Biotechnol Bioeng ; 115(9): 2243-2254, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29940077

RESUMO

3-Methyladenine (3-MA) is a chemical additive that enhances the specific productivity (q p ) in recombinant Chinese hamster ovary (rCHO) cell lines. Different from its widely known function of inhibiting autophagy, 3-MA has instead shown to increase autophagic flux in various rCHO cell lines. Thus, the mechanism by which 3-MA enhances the qp requires investigation. To evaluate the effect of 3-MA on transcriptome dynamics in rCHO cells, RNA-seq was performed with Fc-fusion protein-producing rCHO cells treated with 3-MA. By analyzing genes that were differentially expressed following the addition of 3-MA during culture, the role of 3-MA in the biological processes of rCHO cells was identified. One pathway markedly influenced by the addition of 3-MA was the unfolded protein response (UPR). Having a close relationship with autophagy, the UPR reestablishes protein-folding homeostasis under endoplasmic reticulum (ER) stress. The addition of 3-MA increased the expression of key regulators of the UPR, such as Atf4, Ddit3, and Creb3l3, further supporting the idea that the enhancement of ER capacity acts as a key in increasing the qp . Consequently, the downstream effectors of UPR, which include autophagy-promoting genes, were upregulated as well. Hence, the role of 3-MA in increasing UPR pathway could have made a salient contribution to the increased autophagic flux in rCHO cells. Taken together, transcriptome analysis improved the understanding of the role of 3-MA in gene expression dynamics in rCHO cells and its mechanism in enhancing the qp .


Assuntos
Adenina/análogos & derivados , Células CHO/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Adenina/metabolismo , Animais , Cricetulus , Feminino , Perfilação da Expressão Gênica , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa