Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 19(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540717

RESUMO

For tissue engineering applications, biodegradable scaffolds containing high molecular weights (MW) of collagen and sodium alginate have been developed and characterized. However, the properties of low MW collagen-based scaffolds have not been studied in previous research. This work examined the distinctive properties of low MW collagen-based scaffolds with alginate unmodified and modified by subcritical water. Besides, we developed a facile method to cross-link water-soluble scaffolds using glutaraldehyde in an aqueous ethanol solution. The prepared cross-linked scaffolds showed good structural properties with high porosity (~93%) and high cross-linking degree (50-60%). Compared with collagen (6000 Da)-based scaffolds, collagen (25,000 Da)-based scaffolds exhibited higher stability against collagenase degradation and lower weight loss in phosphate buffer pH 7.4. Collagen (25,000 Da)-based scaffolds with modified alginate tended to improve antioxidant capacity compared with scaffolds containing unmodified alginate. Interestingly, in vitro coagulant activity assay demonstrated that collagen (25,000 Da)-based scaffolds with modified alginate (C25-A63 and C25-A21) significantly reduced the clotting time of human plasma compared with scaffolds consisting of unmodified alginate. Although some further investigations need to be done, collagen (25,000 Da)-based scaffolds with modified alginate should be considered as a potential candidate for tissue engineering applications.


Assuntos
Alginatos/química , Materiais Biocompatíveis/química , Colágeno/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Alginatos/farmacologia , Materiais Biocompatíveis/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Coagulação Sanguínea/fisiologia , Fenômenos Químicos/efeitos dos fármacos , Colágeno/farmacologia , Humanos , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Resistência à Tração/efeitos dos fármacos , Resistência à Tração/fisiologia
2.
Macromol Rapid Commun ; 40(8): e1900005, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30779392

RESUMO

Various molecular weight π-conjugated donor-acceptor polymers based on thiadiazole and thiophene units are investigated with respect to nanoscale film morphology and digital memory performance. Interestingly, all polymers reveal excellent n-type digital permanent memory characteristics, which are governed by the combination of Ohmic and trap-limited space charge limited conductions via a hopping process using thiadiazole and thiophene units as charge traps and stepping stones. The digital memory performance is significantly influenced by the film morphology details that vary with the polymer molecular weight as well as the film thickness. A higher population of face-on structure formation, as well as higher molecular weight, provides a wider film thickness window of digital memory operation. Overall, π-conjugated PBTDzTV polymers are suitable for the production of high-performance, programmable n-type permanent memory devices with very low power consumption.


Assuntos
Nanopartículas/química , Polímeros/química , Tiadiazóis/química , Tiofenos/química , Estrutura Molecular , Peso Molecular
3.
Macromol Rapid Commun ; 38(11)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28321944

RESUMO

Three different series of brush polymers bearing glucosyl, maltosyl, or maltotriosyl moiety at the bristle end are successfully prepared by using cationic ring-opening polymerization and two sequential postmodification reactions. All brush polymers, except for the polymer containing 100 mol% maltotriosyl moiety, demonstrate the formation of multibilayer structure in films, always providing saccharide-enriched surface. These self-assembling features are remarkable, regarding the bulkiness of saccharide moieties and the kink in the bristle due to the triazole linker. The saccharide-enriched film surfaces reveal exceptionally high specific binding affinity to concanavalin A but suppress nonspecific binding of plasma proteins severely. Overall, the brush polymers bearing saccharide moieties of various kinds in this study are highly suitable materials for biomedical applications including biosensors.


Assuntos
Polímeros/síntese química , Polissacarídeos/química , Técnicas Biossensoriais/instrumentação , Polimerização , Polímeros/química
4.
Materials (Basel) ; 15(8)2022 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35454617

RESUMO

Biocompatible ß-Ca3(PO4)2 and mechanically stable t-ZrO2 composites are currently being combined to overcome the demerits of the individual components. A series of five composites were synthesized using an aqueous precipitation technique. Their structural and mechanical stability was examined through X-ray diffraction, Rietveld refinement, FTIR, Raman spectroscopy, high-resolution scanning electron microscopy, and nanoindentation. The characterization results confirmed the formation of ß-Ca3(PO4)2-t-ZrO2 composites at 1100 °C. Heat treatment above 900 °C resulted in the degradation of the composites because of cationic interdiffusion between Ca2+ ions and O-2 vacancy in Zr4+ ions. Sequential thermal treatments correspond to four different fractional phases: calcium-deficient apatite, ß-Ca3(PO4)2, t-ZrO2, and m-ZrO2. The morphological features confirm in situ synthesis, which reveals abnormal grain growth with voids caused by the upsurge in ZrO2 content. The mechanical stability data indicate significant variation in Young's modulus and hardness throughout the composite.

5.
Gels ; 7(3)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34449611

RESUMO

With the increased incidence of bone defects following trauma or diseases in recent years, three-dimensional porous scaffolds fabricated using bioprinting technologies have been widely explored as effective alternatives to conventional bone grafts, which provide cell-friendly microenvironments promoting bone repair and regeneration. However, the limited use of biomaterials poses a significant challenge to the robust and accurate fabrication of bioprinted bone scaffolds that enable effective regeneration of the target tissues. Although bioceramic/polymer composites can provide tunable biomimetic conditions, their effects on the bioprinting process are unclear. Thus, in this study, we fabricated hydroxyapatite (HA)/gelatin composite scaffolds containing large weight fractions of HA using extrusion-based bioprinting, with the aim to provide an adequate biomimetic environment for bone tissue regeneration with compositional and mechanical similarity to the natural bone matrix. The overall features of the bioprinted HA/gelatin composite scaffolds, including rheological, morphological, physicochemical, mechanical, and biological properties, were quantitatively assessed to determine the optimal conditions for both fabrication and therapeutic efficiency. The present results show that the bioprinted bioceramic/hydrogel scaffolds possess excellent shape fidelity; mechanical strength comparable to that of native bone; and enhanced bioactivity in terms of cell proliferation, attachment, and osteogenic differentiation. This study provides a suitable alternative direction for the fabrication of bioceramic/hydrogel-based scaffolds for bone repair based on bioprinting.

6.
ACS Appl Mater Interfaces ; 6(23): 21692-701, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25409277

RESUMO

The mechanism behind electrical memory behavior of carbazole-containing polyimides (PIs) in nanoscale thin films was investigated. For this investigation, a series of poly(3,3'-dihydroxy-4,4'-biphenylene-co-3,3'-bis(N-ethylenyloxycarbazole)-4,4'-biphenylene hexafluoro-isopropylidenedi-phthalimide)s (6F-HAB-HABCZn PIs) with various compositions was synthesized as a model carbazole-containing polymer system. The thermal properties, band gaps, and molecular orbital levels of the PIs were determined. Furthermore, the chemical compositions, as well as the nanoscale thin film morphologies and electron densities, were analyzed, providing detailed information on the population and positional distribution of carbazole moieties in thin films of the PIs. PI Devices were fabricated with aluminum electrodes and tested electrically. The PI thin film layers in the devices exhibited electrically permanent memory behavior, which was driven by trap-limited space-charge limited conduction and ohmic conduction. The permanent memory characteristics were found to be attributed to the incorporated carbazole moieties rather than from the other chemical components. Furthermore, the memory characteristics depended significantly on the population and positional distribution of carbazole moieties in the PI layer, as well as the film thickness. Considering that the backbone is not conjugated, the present results collectively indicate that the electrical switching behavior of the PI films is driven by the carbazole moieties acting as charge traps and a hopping process using the carbazole charge-trap sites as stepping-stones.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa