Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473792

RESUMO

Lindera erythrocarpa, a flowering plant native to eastern Asia, has been reported to have neuroprotective activity. However, reports on the specific bioactive compounds in L. erythrocarpa are finite. The aim of this study was to investigate the anti-neuroinflammatory and neuroprotective effects of the compounds isolated from L. erythrocarpa. Dihydropashanone, a compound isolated from L. erythrocarpa extract, was found to have protected mouse hippocampus HT22 cells from glutamate-induced cell death. The antioxidant and anti-inflammatory properties of dihydropashanone in mouse microglial BV2 and HT22 cells were explored in this study. The results reveal that dihydropashanone inhibits lipopolysaccharide-induced inflammatory response and suppresses the activation of nuclear factor (NF)-κB in BV2 cells. In addition, dihydropashanone reduced the buildup of reactive oxygen species in HT22 cells and induced activation of the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase (HO)-1 signaling pathway in BV2 and HT22 cells. Our results suggest that dihydropashanone reduces neuroinflammation by decreasing NF-κB activation in microglia cells and protects neurons from oxidative stress via the activation of the Nrf2/HO-1 pathway. Thus, our data suggest that dihydropashanone offers a broad range of applications in the treatment of neurodegenerative illnesses.


Assuntos
Lindera , Doenças Neurodegenerativas , Camundongos , Animais , Lindera/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108731

RESUMO

Linderone is a major compound in Lindera erythrocarpa and exhibits anti-inflammatory effects in BV2 cells. This study investigated the neuroprotective effects and mechanisms of linderone action in BV2 and HT22 cells. Linderone suppressed lipopolysaccharide (LPS)-induced inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokines (e.g., tumor necrosis factor alpha, interleukin-6, and prostaglandin E-2) in BV2 cells. Linderone treatment also inhibited the LPS-induced activation of p65 nuclear factor-kappa B, protecting against oxidative stress in glutamate-stimulated HT22 cells. Furthermore, linderone activated the translocation of nuclear factor E2-related factor 2 and induces the expression of heme oxygenase-1. These findings provided a mechanistic explanation of the antioxidant and anti-neuroinflammatory effects of linderone. In conclusion, our study demonstrated the therapeutic potential of linderone in neuronal diseases.


Assuntos
Lindera , NF-kappa B , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Lindera/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Linhagem Celular , Microglia/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
3.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806130

RESUMO

Lindera erythrocarpa contains various constituents such as cyclopentenedione-, flavonoid-, and chalcone-type components. In this study, a novel bi-linderone derivative and 17 known compounds were isolated from the leaves of L. erythrocarpa by using various chromatographic methods. The structures of the components were determined from nuclear magnetic resonance and mass spectrometry data. All isolated compounds were tested for anti-inflammatory and anti-neuroinflammatory activities in lipopolysaccharide (LPS)-induced BV2 and RAW264.7 cells. Some of these compounds showed anti-inflammatory effects by inhibiting the nitric oxide (NO) produced by LPS. In particular, linderaspirone A (16), bi-linderone (17) and novel compound demethoxy-bi-linderone (18) showed significant inhibitory effects on the production of prostaglandin E2 (PGE2), tumor necrosis factor-α, and interleukin-6. The three compounds also inhibited the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), which are pro-inflammatory proteins, and the activation of nuclear factor κB (NF-κB). Therefore, linderaspirone A (16), bi-linderone (17), and demethoxy-bi-linderone (18) isolated from the leaves of L. erythrocarpa have therapeutic potential in neuroinflammatory diseases.


Assuntos
Lindera , Microglia , Anti-Inflamatórios/química , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Lindera/química , Lindera/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
4.
BMC Complement Altern Med ; 19(1): 33, 2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696450

RESUMO

BACKGROUND: Royal jelly (RJ) has been used traditionally for dietary, cosmetic and health purposes for a long time in different parts of the world. Scientific studies have also shown its numerous health-promoting properties including hypoglycemic and anti-hypercholesterolemic action. In this study, we investigated the anti-adipogenic activity of RJ in 3 T3-L1 cells and isolated the major responsible root component for the activity. METHODS: An active anti-adipogenic compound was isolated through bioassay-guided isolation process by successive treatment of RJ and its active fractions on 3 T3-L1 cell line. (E)-10-Hydroxy-2-decenoic Acid (10-HDA) was identified using NMR spectroscopy and ultra-performance liquid chromatography (UPLC). As 10-HDA showed significant anti-adipogenic activity with Oil Red O staining and TG content assay on 3 T3-L1 adipocytes, further study was carried out in molecular level for the expression of adipogenic transcription factors such as PPARγ, FABP4, C/EBPα, SREBP-1c, and Leptin. The effect of 10-HDA on preliminary molecules such as pAkt, pERK, C/EBPß, and pCREB were studied in the early stage of adipogenesis. The effect of 10-HDA on reactive oxygen species (ROS) production in fully differentiating adipocytes was measured by nitro blue tetrazolium (NBT) assay. RESULT: Results showed that triacylglycerol accumulation and ROS production was markedly suppressed by 10-HDA. Preliminary molecules such as pAkt, pERK, pCERB, and C/EBPß were found to be down-regulated by 10-HDA, which led to down-regulation of key adipogenic transcription factors such as PPARγ, FABP4, CEBPα, SREBP-1c, and Leptin on 3 T3-L1 adipocytes. CONCLUSION: Our results suggest that anti-adipogenesis of 10-HDA on 3 T3-L1 adipocyte takes place via two mechanisms: inhibition of cAMP/PKA pathway and inhibition of p-Akt and MAPK dependent insulin signaling pathway. So it is considered that 10-HDA, a major component of RJ, can be a potential therapeutic medicine for obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Células 3T3-L1 , Animais , Bioensaio , Sobrevivência Celular/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/isolamento & purificação , Insulina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos
5.
Molecules ; 24(9)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083285

RESUMO

A fast and reliable ultra-performance liquid chromatography-diode array detection method was developed and validated for the quantitative assessment of turmeric extracts from different geographical locations. Acclaim RSLC PolarAdvantage II column (2.2 µm, 2.1 × 100 mm) was used to analyze individual curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) from turmeric samples. The detection was done on ultraviolet absorbance at 425 nm and the column temperature was maintained at 45 °C. A mobile phase consisting of acetonitrile and water was found to be suitable for separation, at a flow rate of 1 mL/min with linear gradient elution. Linearity, specificity, precision, recovery and robustness were measured to validate the method and instrument. Under the described conditions, curcuminoids were collected within one minute. The calibration curve of each curcuminoid showed good linearity (correlation coefficient > 0.999). The relative standard deviations (RSD) of intra-day, inter-day precision and repeatability were less than 0.73%, 2.47% and 2.47%, respectively. In the recovery test, the accuracy ranged from 98.54%-103.91% with RSD values of less than 2.79%. The developed method was used for quantification of individual curcuminoids of turmeric samples. Analysis of turmeric samples from Nepal and South Korea revealed that curcuminoid content was related to geographical location. Turmeric cultivated in warmer climates were found to have higher curcumionoid content than turmeric samples from cooler climates, the southern part of Nepal was found to have two times higher content of curcuminoids than turmeric from the north.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Curcuma/química , Extratos Vegetais/análise , Calibragem , Curcumina/análogos & derivados , Curcumina/análise , Diarileptanoides
6.
ScientificWorldJournal ; 2018: 6218430, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686587

RESUMO

Sophorae Radix (Sophora flavescens Aiton) has long been used in traditional medicine in East Asia due to the various biological activities of its secondary metabolites. Endogenous contents of phenolic compounds (phenolic acid, flavonol, and isoflavone) and the main bioactive compounds of Sophorae Radix were analyzed based on the qualitative HPLC analysis and evaluated in different organs and at different developmental stages. In total, 11 compounds were detected, and the composition of the roots and aerial parts (leaves, stems, and flowers) was significantly different. trans-Cinnamic acid and p-coumaric acid were observed only in the aerial parts. Large amounts of rutin and maackiain were detected in the roots. Four phenolic acid compounds (benzoic acid, caffeic acid, ferulic acid, and chlorogenic acid) and four flavonol compounds (kaempferol, catechin hydrate, epicatechin, and rutin) were higher in aerial parts than in roots. To identify putative genes involved in phenolic compounds biosynthesis, a total of 41 transcripts were investigated. Expression patterns of these selected genes, as well as the multiple isoforms for the genes, varied by organ and developmental stage, implying that they are involved in the biosynthesis of various phenolic compounds both spatially and temporally.


Assuntos
Genes de Plantas , Fenóis/metabolismo , Sophora/genética , Sophora/metabolismo , Vias Biossintéticas/genética , Cromatografia Líquida de Alta Pressão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos/genética , Fenóis/química , Compostos Fitoquímicos/química , Extratos Vegetais , Sophora/química , Transcriptoma
7.
Bioorg Med Chem Lett ; 27(13): 2946-2952, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28506750

RESUMO

A phytochemical investigation into the bark of Erythrophleum fordii yielded four new compounds, two new cassaine diterpenoids (erythrofordin T and U, 1 and 2) and two new cassaine diterpenoid amines (erythroformine A and B, 6 and 7), as well as nine known compounds. We report for the first time the isolation of erythrofordin V (3) from a natural source and that of the remaining eight known diterpenoids (4-5, 8-13) from E. fordii. All structures were elucidated using spectroscopic analysis. Cytotoxic activity of the isolated compounds (1-13) was examined in vitro against three non-small cell lung cancer cell lines (A549, NCI-H1975, and NCI-H1229) using the MTT assay. Cassaine diterpene amines (6-10, 12, 13) exhibited potent cytotoxic activity against all three cell lines with IC50 values between 0.4µM and 5.9µM. Erythroformine B (7) significantly induced apoptosis in all three cancer cells in a concentration-dependent manner.


Assuntos
Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Diterpenos/farmacologia , Fabaceae/química , Neoplasias Pulmonares/tratamento farmacológico , Casca de Planta/química , Abietanos , Alcaloides/química , Alcaloides/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diterpenos/química , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Pulmonares/patologia , Estrutura Molecular , Relação Estrutura-Atividade
8.
Biosci Biotechnol Biochem ; 81(7): 1305-1313, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28345393

RESUMO

We investigated the anti-inflammatory effects of 3α-hydroxy-lup-20(29)-en-23, 28-dioic acid (HLEDA)-a lupane-type triterpene isolated from leaves of Acanthopanax gracilistylus W. W.Smith (AGS), as well as the underlying molecular mechanisms in lipopolysaccharide (LPS)-induced RAW264.7 cells. Our results demonstrated that HLEDA concentration-dependently reduced the production of nitric oxide (NO), significantly suppressed LPS-induced expression of TNF-α and IL-1ß at the mRNA and protein levels in RAW264.7 cells. Further analysis revealed that HLEDA could reduce the secretion of High Mobility Group Box 1 (HMGB1). Additionally, the results showed that HLEDA efficiently decreased nuclear factor-kappaB (NF-κB) activation by inhibiting the degradation and phosphorylation of IκBα. These results suggest that HLEDA exerts anti-inflammatory properties in LPS-induced macrophages, possibly through inhibition of the NF-κB signaling pathway, which mediates the expression of pro-inflammatory cytokines. These results warrant further studies that would concern candidate therapy for diseases, such as fulminant hepatitis and rheumatology of triterpenoids in AGS.


Assuntos
Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/química , Proteína HMGB1/antagonistas & inibidores , Interleucina-1beta/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Triterpenos/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Relação Dose-Resposta a Droga , Eleutherococcus , Expressão Gênica , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Inflamação , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Inibidor de NF-kappaB alfa/antagonistas & inibidores , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Fosforilação/efeitos dos fármacos , Triterpenos/isolamento & purificação , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
Cytokine ; 77: 168-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26318254

RESUMO

Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of MUC5AC, are significant risk factors in asthma and chronic obstructive pulmonary disease (COPD) patients. Previously, we reported that verproside, a catalpol derivative iridoid glycoside isolated from Pseudolysimachion rotundum var. subintegrum, is a potent anti-asthmatic candidate drug in vivo. However, the molecular mechanisms underlying the pharmacological actions of verproside remain unknown. Here, we found that verproside significantly reduces the expression levels of tumor necrosis factor alpha (TNF-α)-induced MUC5AC mRNA and protein by inhibiting both nuclear factor kappa B (NF-κB) transcriptional activity and the phosphorylation of its upstream effectors such as IκB kinase (IKK)ß, IκBα, and TGF-ß-activated kinase 1 (TAK1) in NCI-H292 cells. Moreover, verproside attenuated TNF-α-induced MUC5AC transcription more effectively when combined with an IKK (BAY11-7082) or a TAK1 (5z-7-oxozeaenol) inhibitor than when administered alone. Importantly, we demonstrated that verproside negatively modulates the formation of the TNF-α-receptor (TNFR) 1 signaling complex [TNF-RSC; TNFR1-recruited TNFR1-associated death domain protein (TRADD), TNFR-associated factor 2 (TRAF2), receptor-interacting protein kinase 1 (RIP1), and TAK1], the most upstream signaling factor of NF-κB signaling. In silico molecular docking studies show that verproside binds between TRADD and TRAF2 subunits. Altogether, these results suggest that verproside could be a good therapeutic candidate for treatment of inflammatory airway diseases such as asthma and COPD by blocking the TNF-α/NF-κB signaling pathway.


Assuntos
Células Epiteliais/efeitos dos fármacos , Glucosídeos Iridoides/farmacologia , Mucina-5AC/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Lactonas/farmacologia , Pulmão/metabolismo , Pulmão/patologia , MAP Quinase Quinase Quinases/metabolismo , Mucina-5AC/genética , Nitrilas/farmacologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Resorcinóis/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonas/farmacologia , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo
10.
J Sep Sci ; 39(12): 2252-62, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27121301

RESUMO

Triterpenoid saponins are difficult to analyze using high-performance liquid chromatography coupled to UV/vis spectrophotometry due to their lack of chromophores. This study describes the first analytical method for the determination of 15 triterpenoid saponins from the leaves, stems, root bark, and fruits of Acanthopanax henryi, using a high-performance liquid chromatography with charged aerosol detection coupled with electrospray ionization mass spectrometry method. The separation was carried out on a Kinetex XB-C18 column with an acetonitrile/water gradient as the mobile phase, followed by charged aerosol detection. The operating conditions of charged aerosol detection were set at 24 kPa for nitrogen pressure and 100 pA for the detection range. Liquid chromatography with electrospray ionization mass spectrometry is described for the identification of compounds in plant samples. The electrospray ionization mass spectrometry method involved the use of the [M + Na](+) and [M + NH4 ](+) ions for compounds 1-15 in the positive ion mode with an extracted ion chromatogram. The developed method was fully validated in terms of linearity, sensitivity, precision, repeatability, and recovery, then subsequently applied to evaluate the quality of A. henryi.


Assuntos
Aerossóis/análise , Eleutherococcus/química , Saponinas/análise , Triterpenos/análise , Cromatografia Líquida , Espectrometria de Massas por Ionização por Electrospray
11.
Molecules ; 21(10)2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27689982

RESUMO

Melanin plays an important role in protecting the skin against ultraviolet light and is responsible for skin color. However, overproduction of melanin is related to several skin disorders, such as age spots, freckles, café au lait spots, Becker's nevus and other hyperpigmentation syndromes. The aim of this study was to identify the effects of kaempferol-7-O-ß-d-glucuronide (K7G) and tilianin, isolated from Cryptotaenia japonica, on melanogenesis and their mechanisms of action in murine B16 melanoma cells. The α-melanocyte-stimulating hormone (α-MSH)-induced melanin production was significantly inhibited by K7G and tilianin in a dose-dependent manner. The effects of these compounds on the signaling pathway of melanogenesis were examined. K7G and tilianin downregulated the expression of microphthalmia-associated transcription factor (MITF) and melanocyte-specific enzymes, i.e., tyrosinase and TRP1. These compounds also inhibited the phosphorylation of cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) in a dose-dependent manner. In addition, these compounds increased the phosphorylation of extracellular signal-regulated kinase (ERK) but decreased the phosphorylation of c-Jun N-terminal kinase (JNK) in B16 cells. Based on the above results, the anti-melanogenic effects of these compounds are caused by suppression of the MAPK signaling pathway through the down-regulation of α-MSH-induced CREB accumulation. This finding suggests that K7G and tilianin may be good candidates for further research to develop therapeutic agents for hyperpigmentation diseases.

12.
Bioorg Med Chem Lett ; 25(22): 5087-91, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26483135

RESUMO

Two new benzofurans, 2-(3,4-dimethoxyphenyl)-5-(1,3-dihydroxypropyl)-7-methoxybenzofuran (1) and 2-(3,4-methylenedioxyphenyl)-5-(3-hydroxymethyletoxy-1-hydroxypropyl)-7-methoxybenzofuran (2), a new triterpene, 3ß, 6ß, 21ß-trihydroxyolean-12-ene (3), and eleven known compounds were isolated from the stem bark of Styrax obassia. The structures of the isolated compounds were established by extensive spectroscopic analyses, including 1D and 2D NMR and HRMS. Their anti-inflammatory activities were evaluated against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 macrophages. Compound 1 was shown to reduce LPS-induced iNOS expression in a dose-dependent manner. In addition, pretreating cells with 1 significantly suppressed their LPS-induced expression of COX-2 protein.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Benzofuranos/farmacologia , Óxido Nítrico/antagonistas & inibidores , Styrax/química , Animais , Anisóis/isolamento & purificação , Anisóis/farmacologia , Anti-Inflamatórios não Esteroides/isolamento & purificação , Benzofuranos/isolamento & purificação , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/isolamento & purificação , Inibidores de Ciclo-Oxigenase 2/farmacologia , Camundongos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Casca de Planta/química , Triterpenos/isolamento & purificação , Triterpenos/farmacologia
13.
Carcinogenesis ; 35(2): 432-41, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24031026

RESUMO

Mitogen-activated protein kinases play a key role in cell proliferation, cell cycle progression and cell transformation, and activated Ras/extracellular signal-regulated kinases (ERKs)/ribosomal S6 kinase 2 (RSK2) signaling pathways have been widely identified in many solid tumors. In this study, we found that magnolin, a compound found in the Magnolia species, directly targeted and inhibited ERK1 and ERK2 kinase activities with IC50 values of 87 and 16.5 nM by competing with adenosine triphosphate in an active pocket. Further, we demonstrated that magnolin inhibited epidermal growth factor (EGF)-induced p90RSKs phosphorylation at Thr359/Ser363, but not ERKs phosphorylation at Thr202/Tyr204, and this resulted in inhibition of cell proliferation by suppression of the G1/S cell cycle transition. Additionally, p38 kinases, Jun N-terminal kinases and Akts were not involved in the magnolin-mediated inhibitory signaling. Magnolin targeting of ERK1 and 2 activities suppressed the phosphorylation of RSK2 and downstream target proteins including ATF1 and c-Jun and AP-1, a dimer of Jun/Fos, and the transactivation activities of ATF1 and AP-1. Notably, ERKs inhibition by magnolin suppressed EGF-induced anchorage-independent cell transformation and colony growth of Ras(G12V)-harboring A549 human lung cancer cells and NIH3T3 cells stably expressing Ras(G12V) in soft agar. Taken together, these results demonstrated that magnolin might be a naturally occurring chemoprevention and therapeutic agent capable of inhibiting cell proliferation and transformation by targeting ERK1 and ERK2.


Assuntos
Ciclo Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Lignanas/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Proteínas ras/antagonistas & inibidores , Animais , Western Blotting , Transformação Celular Neoplásica/patologia , Células Cultivadas , Medicamentos de Ervas Chinesas/farmacologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Knockout , Células NIH 3T3 , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas ras/metabolismo
14.
Chem Pharm Bull (Tokyo) ; 62(2): 185-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492589

RESUMO

A new megastigmane glycoside, galloyl linarionoside A (1), together with 13 known compounds (2-14) were isolated from the aerial parts of Aceriphyllum rossii ENGLER. (Saxifragaceae). The chemical structures of the isolated compounds were established mainly by using nuclear magnetic resonance spectra, mass spectrometry, and modified Mosher's method. Among the isolates, compounds 4, 5, 6 and 7 showed potent inhibitory activity against the lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophage cells with IC50 values of 12.5, 9.5, 10.5 and 9.3 µM, respectively. The anti-inflammatory effect of compound 7 was accompanied by dose-dependent decreases in the production of inducible nitric oxide synthase and cyclooxygenase-2 proteins not in the inhibitor kappa B (IκB)-dependent nuclear factor-kappa B activation.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Óxido Nítrico/imunologia , Componentes Aéreos da Planta/química , Saxifragaceae/química , Animais , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Proteínas I-kappa B/imunologia , Lipopolissacarídeos/imunologia , Camundongos , NF-kappa B/imunologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia
15.
Biosci Biotechnol Biochem ; 77(12): 2356-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24317045

RESUMO

The biological activity of Mastixia arborea (MA) relates to inflammation, but the underlying mechanisms are largely unknown. We confirmed the anti-inflammatory effects of a methanol extract of MA extract on lipopolysaccharide (LPS)-stimulated RAW264.7 mouse macrophage cells and carrageenan-induced mice paw edema. The MA extract significantly inhibited nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1ß (IL-1ß), and IL-6 production in LPS-stimulated RAW264.7 cells. In vitro expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was suppressed by the extract. The extract attenuated acute inflammatory responses in carrageenan-induced mice paw edema. A mechanism study indicated that translocation of the NF-κB (p65) subunit into the nucleus and phosphorylation of ERK and JNK were inhibited by the extract. These results indicate that the extract is an effective suppressor of the inflammatory response, blocking the phosphorylation of ERK and JNK and the translocation of NF-κB in macrophages, thereby producing an anti-inflammatory effect in vivo.


Assuntos
Anti-Inflamatórios/farmacologia , Cornaceae/química , Edema/tratamento farmacológico , Membro Posterior , Macrófagos/efeitos dos fármacos , Metanol/química , Extratos Vegetais/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Anti-Inflamatórios/uso terapêutico , Carragenina/efeitos adversos , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Ciclo-Oxigenase 2/biossíntese , Dinoprostona/biossíntese , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/enzimologia , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/uso terapêutico
16.
Chem Pharm Bull (Tokyo) ; 61(6): 674-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23727783

RESUMO

Two new triterpenes, (1α,3ß,8α,9ß,10α,13α,14ß)-9,10-dimethyl-25,26-dinorolean-5-en-1,3-diol (1) and (1α,3ß,6ß)-olean-12-en-1,3,6-triol (2) were isolated from the leaves of Aleurites fordii, together with five known triterpenes. The structures of isolates were established by one dimensional (1D)- and 2D-NMR spectroscopic data along with MS analysis. Of the isolated compounds, 1, 2 and 4 (daturadiol) displayed moderate cytotoxicities against two or more human cancer cell lines in HepG2 (hepatocellular carcinoma), SK-OV-3 (ovarian carcinoma), A-549 (lung carcinoma) and SNU-1 (gastric carcinoma).


Assuntos
Euphorbiaceae/química , Triterpenos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Folhas de Planta/química , Triterpenos/isolamento & purificação , Triterpenos/toxicidade
17.
Chem Pharm Bull (Tokyo) ; 61(9): 920-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23995356

RESUMO

Bioactivity-guided fractionation for an EtOAc-soluble fraction of methanolic extract of Arthraxon hispidus, using primary cell assay with bone marrow-derived mast cells (BMMC), led to an isolation of six new flavones and nine known compounds. The structures of the new compounds were established by one dimensional (1D)- and 2D-NMR spectroscopic data, as luteolin 8-C-ß-kerriopyranoside (1), luteolin 8-acetic acid methyl ester (2), 7-methyl-luteolin 8-C-ß-(6-deoxyxylo-3-uloside) (3), apigenin 8-C-α-fucopyranoside (4), apigenin 8-C-ß-fucopyranoside (5) and luteolin 8-C-ß-fucopyranoside (6). All the isolates were evaluated for inhibitory activities on interleukin-6 release in the primary cultures using BMMC. Of the tested compounds, compounds 2, 3 and 10 were found to inhibit interleukin-6 release. Furthermore, compound 2 displayed inhibitory activity against prostaglandin D2, leukotriene C4, and ß-hexosaminidase releases.


Assuntos
Antialérgicos/química , Antialérgicos/farmacologia , Flavonas/química , Flavonas/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Poaceae/química , Animais , Antialérgicos/isolamento & purificação , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células Cultivadas , Flavonas/isolamento & purificação , Interleucina-6/imunologia , Leucotrieno C4/imunologia , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/isolamento & purificação , Prostaglandina D2/imunologia
18.
Bioorg Med Chem Lett ; 22(6): 2318-20, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22361132

RESUMO

Bioactivity-guided fractionation on the leaves of Aleurites fordii led to the isolation of a new tigliane diterpene ester, 12-O-hexadecanoyl-7-oxo-5-ene-16-hydroxyphorbol-13-acetate (1) along with four known compounds, 12-O-hexadecanoyl-7-oxo-5-ene-phorbol-13-acetate (2), 12-O-hexadecanoyl-phorbol-13-acetate (3), 12-O-hexadecanoyl-16-hydroxyphorbol-13-acetate (4), and 12-O-hexadecanoyl-4-deoxy-4α-16-hydroxyphorbol-13-acetate (5). The structures of these compounds were determined by interpretation of NMR (1D and 2D) spectroscopic data and MS data. All the isolates were evaluated for their effects on the induction of IFN-γ in NK92 cells. Compounds 3 and 4 exhibited the most potent responses in IFN-γ induction, comparable to the positive control, phorbol 12-myristate 13-acetate (PMA).


Assuntos
Aleurites/química , Antivirais/química , Diterpenos/química , Folhas de Planta/química , Antivirais/isolamento & purificação , Antivirais/farmacologia , Linhagem Celular , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Ésteres , Interferon gama/biossíntese , Células Matadoras Naturais/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Extratos Vegetais/química , Extração em Fase Sólida , Acetato de Tetradecanoilforbol/farmacologia
19.
Planta Med ; 78(12): 1391-4, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22753039

RESUMO

Seven known triterpene glycosides, 23-O-acetylshengmanol 3-O-α-L-arabinopyranoside (1), 23-O-acetylshengmanol 3-O-ß-D-xylopyranoside (2), 24-epi-24-O-acetylhydroshengmanol 3-O-ß-D-xylopyranoside (3), cimiaceroside B (4), (23R,24S)-cimigenol 3-O-ß-D-xylopyranoside (5), (23R,24R)-25-O-acetylcimigenol 3-O-ß-D-xylopyranoside (6) and (23R,24S)-25-O-anhydrocimigenol 3-O-ß-D-xylopyranoside (7) were isolated from the rhizomes of Cimicifuga heracleifolia. Their chemical structures were determined on the basis of spectroscopic analyses including 2D NMR. All isolates were investigated for their inhibitory effects on the classical pathway of the complement system. Among them, compound 6 showed strong inhibitory activity with an IC50 value of 7.7 µM while compound 3 was moderately active with an IC50 value of 195.6 µM.


Assuntos
Cimicifuga/química , Proteínas Inativadoras do Complemento/isolamento & purificação , Proteínas Inativadoras do Complemento/farmacologia , Via Clássica do Complemento/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Glicosídeos/farmacologia , Triterpenos/farmacologia , Animais , Proteínas Inativadoras do Complemento/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Glicosídeos/química , Glicosídeos/isolamento & purificação , Estrutura Molecular , Rizoma/química , Ovinos , Triterpenos/química , Triterpenos/isolamento & purificação
20.
Artigo em Inglês | MEDLINE | ID: mdl-22454678

RESUMO

We investigated whether Zuonin B exerts immunological effects on RAW264.7 cells. Zuonin B, isolated from flower buds of Daphne genkwa, suppressed the levels of nitric oxide and prostaglandin E(2), as well as proinflammatory cytokines, such as tumor necrosis factor-α and interleukin-(IL-) 6, in lipopolysaccharide-stimulated macrophages. Moreover, the compound inhibited cyclooxygenase-2 and inducible nitric oxide synthase expression. Zuonin B attenuated NF-kappaB (NF-κB) activation via suppressing proteolysis of inhibitor kappa B-alpha (IκB-α) and p65 nuclear translocation as well as phosphorylation of extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase. Additionally, IL-4 and IL-13 production in ConA-induced splenocytes was inhibited by Zuonin B. In conclusion, the anti-inflammatory effects of Zuonin B are attributable to the suppression of proinflammatory cytokines and mediators via blockage of NF-κB and AP-1 activation. Based on these findings, we propose that Zuonin B is potentially an effective functional chemical candidate for the prevention of inflammatory diseases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa