Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(25): 41611-41621, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087555

RESUMO

In GaN-based vertical micro LEDs, conventional metal n-contacts on the N face n-GaN suffer from a low aperture ratio due to the high reflection of metals, resulting in low-light extraction efficiencies. Great efforts have been devoted to enhancing transparency by employing transparent conducting oxides for n-contacts, but they exhibited poor Ohmic behavior due to their large work functions. Herein, we introduce an InN/ITO n-contact to achieve both superior contact property and high transparency. At the initial stage, the ITO with thin In interlayer was utilized, and the change in contact properties was observed with different annealing temperatures in the N2 atmosphere. After annealing at 200 °C, the In/ITO n-contact exhibited Ohmic behavior with high a transparency of 74% in the blue wavelength region. The metallic In transformed into InN during the annealing process, as confirmed by transmission electron microscopy. The formation of InN caused polarization-induced band bending at the InN/GaN interface, providing evidence of enhanced Ohmic properties. In the application of vertical GaN µLED, the EQE increased from 6.59% to 11.5% while operating at 50 A/cm2 after the annealing process.

2.
J Am Chem Soc ; 143(27): 10099-10107, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34210119

RESUMO

Hybrid materials consisting of semiconductors and cocatalysts have been widely used for photoelectrochemical (PEC) conversion of CO2 gas to value-added chemicals such as formic acid (HCOOH). To date, however, the rational design of catalytic architecture enabling the reduction of real CO2 gas to chemical has remained a grand challenge. Here, we report a unique photocathode consisting of CuS-decorated GaN nanowires (NWs) integrated on planar silicon (Si) for the conversion of H2S-containing CO2 mixture gas to HCOOH. It was discovered that H2S impurity in the modeled industrial CO2 gas could lead to the spontaneous transformation of Cu to CuS NPs, which resulted in significantly increased faradaic efficiency of HCOOH generation. The CuS/GaN/Si photocathode exhibited superior faradaic efficiency of HCOOH = 70.2% and partial current density = 7.07 mA/cm2 at -1.0 VRHE under AM1.5G 1 sun illumination. To our knowledge, this is the first demonstration that impurity mixed in the CO2 gas can enhance, rather than degrade, the performance of the PEC CO2 reduction reaction.

3.
Small ; 17(29): e2100654, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34174148

RESUMO

Energy-saving window that selectively blocks near-infrared (NIR) is a promising technology to save energy consumption. However, it is hard to achieve both high transmittance in visible light and high reflectance in NIR for the energy-saving windows. Here, a TiO2 /Ag/TiO2 /SiO2 /TiO2 multilayer is demonstrated on a glass substrate to selectively block NIR while maintaining high transmittance to visible light. The thickness of a TiO2 /Ag/TiO2 structure is first design and optimized; the metal layer reflects NIR and the dielectric layers increase transmittance of visible light with zero reflection condition. To further enhance NIR-blocking capability, a TiO2 back reflector is implemented with a SiO2 spacer to TiO2 /Ag/TiO2 structure. The back reflector can induce additional Fresnel reflection without sacrificing transmittance to visible light. The optimal TiO2 (32 nm)/Ag (22 nm)/TiO2 (30 nm)/SiO2 (100 nm)/TiO2 (110 nm)/glass shows solar energy rejection 89.2% (reflection 86.5%, absorption 2.7%) in NIR, visible transmittance 69.9% and high long-wave (3 ≤ λ ≤ 20 µm) reflectance > 95%. This proposed visible-transparent, near-infrared-reflecting multilayer film can be applied to the windows of buildings and automobiles to reduce the energy consumption.

4.
Opt Express ; 28(21): 30466-30477, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115047

RESUMO

Blocking the near-infrared region (NIR) is indispensable for saving energy consumed to maintain the interior temperature in buildings. However, simultaneously enhancing transmission in visible light and blocking in the NIR remains challenging. Here, we theoretically demonstrate a transparent all-dielectric metasurface selectively blocking the NIR by using TiO2 nanocylinders and an indium tin oxide (ITO) layer. The ITO layer is implemented as a back reflector because ITO is transparent in visible light, whereas the ITO becomes a reflective material in the long-wavelength region (λ > 1500 nm). The designed metasurface exhibits high average transmittance of 70% in visible light and high solar energy rejection (SER) of 90% in the NIR. Furthermore, the blocking capability in the NIR of the designed metasurface is maintained over a wide range of an incident angle and polarization angle of light. Therefore, the metasurface gives a guideline for designing energy-saving applications.

5.
Small ; 13(23)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28464506

RESUMO

A flexible hazy substrate (FHS) with embedded air bubbles to increase light extraction efficiency of organic light-emitting diodes (OLEDs) is reported. In order to embed the air bubbles in the flexible substrate, micropatterned substrates are fabricated by plasma treatment, and then coated with a planarization layer. During the planarization layer coating, air bubbles are trapped between the substrate and the planarization layer. The haze of the FHS can be controlled from 1.7% to 68.4% by changing the size of micropatterns by adjusting the plasma treatment time. The FHS shows average haze of 68.4%, average total transmittance of 90.3%, and extremely flat surface with average roughness (R a ) of 1.2 nm. Rigorous coupled-wave analysis and finite-difference time-domain simulations are conducted to demonstrate that the air bubbles in the substrate can effectively extract photons that are trapped in the substrate. The FHS increases the power efficiency of OLEDs by 22% and further increases by 91% combined with an external extraction layer. Moreover, the FHS has excellent mechanical flexibility. No defect has been observed after 10 000 bending cycles at bending radius of 4 mm.

6.
Small ; 11(16): 1947-53, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25504619

RESUMO

Flexible amorphous silicon (a-Si:H) solar cells with high photoconversion efficiency (PCE) are demonstrated by embedding hexagonal pyramid nanostructures below a Ag/indium tin oxide (ITO) reflector. The nanostructures constructed by nanoimprint lithography using soft materials allow the top ITO electrode to spontaneously form parabolic nanostructures. Nanoimprint lithography using soft materials is simple, and is conducted at low temperature. The resulting structure has excellent durability under repeated bending, and thus, flexible nanostructures are successfully constructed on flexible a-Si:H solar cells on plastic film. The nanoimprinted pyramid back reflector provides a high angular light scattering with haze reflectance >98% throughout the visible spectrum. The spontaneously formed parabolic nanostructure on the top surface of the a-Si:H solar cells both reduces reflection and scatters incident light into the absorber layer, thereby elongating the optical path length. As a result, the nanopatterned a-Si:H solar cells, fabricated on polyethersulfone (PES) film, exhibit excellent mechanical flexibility and PCE increased by 48% compared with devices on a flat substrate.

7.
Opt Express ; 22 Suppl 5: A1257-69, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25322180

RESUMO

Controlling the wavelength of electrodes within a desirable region is important in most optoelectronic devices for enhancing their efficiencies. Here, we investigated a full-color flexible transparent electrode using a wavelength matching layer (WML). The WMLs were able to adjust the optical-phase thickness of the entire electrode by controlling refractive indices and were capable of producing desirable colors in the visible band from 470 to 610 nm. Electrodes with tungsten oxide (WO(3)) having a refractive index of 1.9 showed high transmittance (T = 90.5%) at 460 nm and low sheet resistance (R(s) = 11.08 Ω/sq), comparable with those of indium tin oxide (ITO, T = 86.4%, R(s) = 12 Ω/sq). The optimum structure of electrodes determined by optical simulation based on the characteristic matrix method agrees well with that based on the experimental method. Replacing the ITO electrode with the WO(3) electrode, the luminance of blue organic light-emitting diodes (λ = 460 nm) at 222 mA/cm(2) increased from 7020 to 7200 cd/m(2).

8.
ACS Appl Mater Interfaces ; 15(35): 41688-41696, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37615163

RESUMO

Due to their promising advantages over classical rigid devices, the development of display textiles has exciting potential for various fields, including sensor technology, healthcare, and communication. To realize display textiles, it is necessary to prepare light-emitting building blocks at the fiber level and then weave or knit them to form the desired textile structures. However, from a practical viewpoint, it is difficult to continuously weave functional fibers containing light-emitting devices using conventional textile technologies. To address this issue, we introduced fibrous modules that can be assembled like LEGO blocks to realize textile displays. A unique feature of this work is that the light-emitting pixels are generated through a simple contact between modular electrochemiluminescent (ECL) fibers. Each fiber is composed of a single metallic wire coated with a gel-type ECL electrolyte that is formed by using a simple dip-coating method in ambient air. The sticky nature of the gel electrolyte enables the construction of light-emitting pixels through the simple physical contact of two or more fiber modules without the need for external pressure or heating. The diversity of this technology offers in terms of fibrous module arrangements and assembly can provide various options for designing the geometries of light-emitting pixels. We have implemented this technique to demonstrate not only a 1 × 1 pixel but also 3 × 3 pixels with an irregular shape. These results demonstrate that the unique strategy for display devices developed in this work provides a feasible approach for various electronic and optical textile applications.

9.
Opt Express ; 20 Suppl 2: A287-92, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22418678

RESUMO

We present the enhancement of wall-plug efficiency in vertical InGaN/GaN light-emitting diodes (V-LEDs) by improved current spreading with a novel Al2O3 current blocking layer (CBL). The Al2O3 CBL deposited by electron-beam evaporation shows high transmittance and good corrosion resistance to acidic solutions. V-LEDs with an Al2O3 CBL show similar light output power but lower forward voltage as compared to those with a SiO2 CBL deposited by plasma-enhanced chemical vapor deposition. As a result, the wall-plug efficiency of V-LEDs with an Al2O3 CBL at 500 mA was improved by 5% as compared to those with a SiO2 CBL, and by 19% as compared to those without a CBL.

10.
Opt Express ; 20(2): 845-53, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22274430

RESUMO

We replace Indium Tin Oxide (ITO) with an MgO nano-facet Embedded WO(3)/Ag/WO(3)(WAW) multilayer for electrodes of high efficiency OLEDs. WAW shows higher values for transmittance (93%) and conductivity (1.3×10(5) S/cm) than those of ITO. Moreover, WAW shows higher transmittance (92.5%) than that of ITO (86.4%) in the blue region (<500 nm). However, due to the large difference in refractive indices (n) of glass (n=1.55) and WO(3) (n=1.95), the incident light has a small critical angle (52°). Thus, the generated light is confined by the glass/WAW interface, resulting in low light outcoupling efficiency (~20%). This can be enhanced by using a nano-facet structured MgO (n=1.73) layer and a ZrO(2) (n=1.84) layer as a graded index layer. Using these optimized electrodes, ITO-free, OLEDs with various emission wavelengths have been produced. The luminance of OLEDs using MgO/ZrO(2)/WAW layers is enhanced by 24% compared to that of devices with ITO.


Assuntos
Eletrodos , Óxido de Magnésio/química , Nanotecnologia/métodos , Dispositivos Ópticos , Refratometria/métodos , Prata/química , Condutividade Elétrica , Vidro/química , Nanotecnologia/instrumentação , Óxidos/química , Refratometria/instrumentação , Tungstênio/química , Zircônio/química
11.
ACS Nano ; 16(3): 3546-3553, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35184548

RESUMO

Metasurface-driven optical encryption devices have attracted much attention. Here, we propose a dual-band vectorial metahologram in the visible and ultraviolet (UV) regimes for optical encryption. Nine polarization-encoded vectorial holograms are observed under UV laser illumination, while another independent hologram appears under visible laser illumination. The proposed engineered silicon nitride, which is transparent in UV, is employed to demonstrate the UV hologram. Nine holographic images for different polarization states are encoded using a pixelated metasurface. The dual-band metahologram is experimentally implemented by stacking the individual metasurfaces that operate in the UV and visible. The visible hologram can be decrypted to provide the first key, a polarization state, which is used to decode the password hidden in the UV vectorial hologram through the use of an analyzer. Considering the property of UV to be invisible to the naked eye, the multiple polarization channels of the vectorial hologram, and the dual-band decoupling, the demonstrated dual-band vectorial hologram device could be applied in various high-security and anticounterfeiting applications.

12.
ACS Appl Mater Interfaces ; 14(15): 17709-17718, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35389205

RESUMO

Herein, a new concept of device architecture to fabricate fibrous light-emitting devices is demonstrated based on an electrochemiluminescence (ECL) material for an electronic textile system. A unique feature of this work is that instead of conventional semiconductor materials, such as organics, perovskites, and quantum dots for fibrous light emitting devices, a solid-state ECL electrolyte gel is employed as a light-emitting layer. The solid-state ECL gel is prepared from a precursor solution composed of matrix polymer, ionic liquid, and ECL luminophore. From this, we successfully realize light-emitting fibers through a simple and cost-effective single-step dip-coating method in ambient air, without complicated multistep vacuum processes. The resulting fiber devices reliably operated under applied AC bias of ±2.5 V and showed luminance of 47 cd m-2. More importantly, the light-emitting fibers exhibited outstanding water resistance without any passivation layers, owing to the water immiscible and hydrophobic nature of the ECL gel. In addition, because of their simple structure, the fiber devices can be easily deformed and woven together with commercial knitwear by hand. Therefore, these results suggest a promising strategy for the development of practical fiber displays and contribute to progress in electronic textile technology.

13.
J Appl Crystallogr ; 55(Pt 4): 813-822, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979068

RESUMO

Serial femtosecond crystallography (SFX) enables the determination of room-temperature crystal structures of macromolecules with minimized radiation damage and provides time-resolved molecular dynamics by pump-probe or mix-and-inject experiments. In SFX, a variety of sample delivery methods with unique advantages have been developed and applied. The combination of existing sample delivery methods can enable a new approach to SFX data collection that combines the advantages of the individual methods. This study introduces a combined inject-and-transfer system (BITS) method for sample delivery in SFX experiments: a hybrid injection and fixed-target scanning method. BITS allows for solution samples to be reliably deposited on ultraviolet ozone (UVO)-treated polyimide films, at a minimum flow rate of 0.5 nl min-1, in both vertical and horizontal scanning modes. To utilize BITS in SFX experiments, lysozyme crystal samples were embedded in a viscous lard medium and injected at flow rates of 50-100 nl min-1 through a syringe needle onto a UVO-treated polyimide film, which was mounted on a fixed-target scan stage. The crystal samples deposited on the film were raster scanned with an X-ray free electron laser using a motion stage in both horizontal and vertical directions. Using the BITS method, the room-temperature structure of lysozyme was successfully determined at a resolution of 2.1 Å, and thus BITS could be utilized in future SFX experiments.

14.
ACS Appl Mater Interfaces ; 13(19): 22676-22683, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33956445

RESUMO

We report a photorechargeable supercapacitor that can convert solar energy to chemical energy and store it. The supercapacitor is composed of indium tin oxide branched nanowires (ITO BRs) and poly(3-hexylthiophene) (P3HT) semiconducting polymers. ITO BRs showed electrical double layer capacitive characteristics that originated from the unique porous and self-connected network structure. The hybrid structure of ITO BR/P3HT exhibited spontaneous light harvesting, energy conversion, and charge storage. As a result, photocharging/discharging of ITO BR/P3HT showed an areal capacitance of 2.44 mF/cm2 at a current density of 0.02 mA/cm2. The proof-of-concept photorechargeable device, composed of ITO BRs, ITO BR/P3HT, and Na2SO4/polyvinyl acetate gel electrolyte, generated a photovoltage as high as 0.28 V and stored charge effectively for tens of seconds. The combination of dual functions in a single hybrid material may achieve breakthrough advances.

15.
ACS Appl Mater Interfaces ; 13(33): 39660-39670, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387461

RESUMO

Red, green, and blue top-emission organic light-emitting diodes (RGB TOLEDs) suffer from white color change with viewing angle due to the microcavity effect, called white angular dependence (WAD). Great efforts are devoted by applying various kinds of hazy films, but they suffer from poor mechanical stability and optical transmittance. Herein, we introduce an air-gap-embedded hazy film (AEHF) to solve these problems and suppress WAD in RGB TOLEDs. The AEHF is designed with optical simulation to realize high haze with transparency. By tuning geometries of the air gap inside the polymer, the AEHF realizes high haze of more than 90% in all RGB colors while maintaining high transparency. To experimentally demonstrate the AEHF, the O2 plasma is treated on a polymer film with AgCl as an etching mask to fabricate microstructures with high aspect ratios. Afterward, PDMS is coated on the patterned surface; air gaps develop spontaneously in the valleys between microstructures during the coating process. Using these processes, an air gap with 1.2 µm size and 400 nm period is formed inside the film and ∼100% haze is achieved while maintaining a high transmittance of 88%; these results agree well with rigorous coupled wave analysis results. By utilizing the AEHF into TOLEDs, the WAD can be drastically suppressed by 95.2% compared with that of a device without AEHF.

16.
ACS Appl Mater Interfaces ; 13(16): 18905-18913, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33848138

RESUMO

We investigated the relationship between grain boundary (GB) oxidation of Cu-Ag thin-film catalysts and selectivity of the (photo)electrochemical CO2 reduction reaction (CO2 RR). The change in the thickness of the Cu thin film accompanies the variation of GB density, and the Ag layer (3 nm) has an island-like morphology on the Cu thin film. Therefore, oxygen from ambient air penetrates into the Cu thin film through the GB of Cu and binds with it because the uncoordinated Cu atoms at the GBs are unstable. It was found that the Cu thin film with a small grain size was susceptible to spontaneous oxidation and degraded the faradaic efficiency (FE) of CO and CH4. However, a relatively thick (≥80 nm) Cu layer was effective in preventing the GB oxidation and realized catalytic properties similar to those of bulk Cu-Ag catalysts. The optimized Cu (100 nm)-Ag (3 nm) thin film exhibited a unique bifunctional characteristic, which enables selective production of both CO (FECO = 79.8%) and CH4 (FECH4 = 59.3%) at a reductive potential of -1.0 and -1.4 VRHE, respectively. Moreover, the Cu-Ag thin film was used as a cocatalyst for photo-electrochemical CO2 reduction by patterning the Cu-Ag thin film and a SiO2 passivation layer on a p-type Si photocathode. This novel architecture improved the selectivity of CO and CH4 under light illumination (100 mW/cm2).

18.
Opt Express ; 18(6): 5466-71, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20389563

RESUMO

We present a method of increasing light output power and suppressing efficiency droop in vertical-structure InGaN/GaN MQW LEDs without modifying their epitaxial layers. These improvements are achieved by reducing the quantum-confined Stark effect (QCSE) by reducing piezoelectric polarization that results from compressive stress in the GaN epilayer. This compressive stress is relaxed due to the external stress induced by an electro-plated Ni metal substrate. In simulations, the severe band bending in the InGaN quantum well is reduced and subsequently internal quantum efficiency increases as the piezoelectric polarization is reduced.


Assuntos
Gálio/química , Índio/química , Iluminação/instrumentação , Modelos Químicos , Semicondutores , Força Compressiva , Simulação por Computador , Desenho Assistido por Computador , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Estresse Mecânico
19.
Opt Express ; 18 Suppl 3: A403-10, 2010 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21165070

RESUMO

We demonstrate novel method for improving light extraction efficiency for n-side-up vertical InGaN/GaN light-emitting diodes (V-LEDs) using MgO nano-pyramids and ZnO refractive-index modulation layer. The MgO nano-pyramids structure is successfully fabricated on n-GaN/ZnO surface using electron-beam evaporation. The light output power of n-GaN/ZnO/MgO V-LEDs is enhanced by 49% compare to that of n-GaN V-LEDs. The angular-dependent far-field emission shows the significant increase of side emission for the n-GaN/ZnO/MgO V-LEDs due to the increase of critical angle for total internal reflection as well as the roughened surface by MgO pyramids structure. These experimental results indicate the critical role of surface texturing in improving the light extraction efficiency of the V-LEDs for solid-state lighting.

20.
Nanotechnology ; 21(2): 025203, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19955615

RESUMO

We report effective methods for improving light extraction efficiency for n-side-up vertical InGaN light-emitting diodes (LEDs). For the LEDs with high reflectance Ag-based p-contacts, nanotexturing of the n-GaN surface using a combination of photonic crystals and photochemical etching drastically enhances the efficiency of extraction from the top surface. In contrast, the LEDs with low reflectance Au-based p-contacts show significantly less improvement through the nanotexturing. These experimental results indicate the critical role of high reflectance p-contacts as well as surface texturing in improving the light extraction efficiency of the vertical LEDs for solid-state lighting.


Assuntos
Gálio/química , Índio/química , Iluminação/instrumentação , Microeletrodos , Nanoestruturas/química , Nanotecnologia/instrumentação , Semicondutores , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa