Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Mol Psychiatry ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664492

RESUMO

With advances in our understanding regarding the neurochemical underpinnings of neurological and psychiatric diseases, there is an increased demand for advanced computational methods for neurochemical analysis. Despite having a variety of techniques for measuring tonic extracellular concentrations of neurotransmitters, including voltammetry, enzyme-based sensors, amperometry, and in vivo microdialysis, there is currently no means to resolve concentrations of structurally similar neurotransmitters from mixtures in the in vivo environment with high spatiotemporal resolution and limited tissue damage. Since a variety of research and clinical investigations involve brain regions containing electrochemically similar monoamines, such as dopamine and norepinephrine, developing a model to resolve the respective contributions of these neurotransmitters is of vital importance. Here we have developed a deep learning network, DiscrimNet, a convolutional autoencoder capable of accurately predicting individual tonic concentrations of dopamine, norepinephrine, and serotonin from both in vitro mixtures and the in vivo environment in anesthetized rats, measured using voltammetry. The architecture of DiscrimNet is described, and its ability to accurately predict in vitro and unseen in vivo concentrations is shown to vastly outperform a variety of shallow learning algorithms previously used for neurotransmitter discrimination. DiscrimNet is shown to generalize well to data captured from electrodes unseen during model training, eliminating the need to retrain the model for each new electrode. DiscrimNet is also shown to accurately predict the expected changes in dopamine and serotonin after cocaine and oxycodone administration in anesthetized rats in vivo. DiscrimNet therefore offers an exciting new method for real-time resolution of in vivo voltammetric signals into component neurotransmitters.

2.
Bipolar Disord ; 26(4): 376-387, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558302

RESUMO

BACKGROUND: Treatment of refractory bipolar disorder (BD) is extremely challenging. Deep brain stimulation (DBS) holds promise as an effective treatment intervention. However, we still understand very little about the mechanisms of DBS and its application on BD. AIM: The present study aimed to investigate the behavioural and neurochemical effects of ventral tegmental area (VTA) DBS in an animal model of mania induced by methamphetamine (m-amph). METHODS: Wistar rats were given 14 days of m-amph injections, and on the last day, animals were submitted to 20 min of VTA DBS in two different patterns: intermittent low-frequency stimulation (LFS) or continuous high-frequency stimulation (HFS). Immediately after DBS, manic-like behaviour and nucleus accumbens (NAc) phasic dopamine (DA) release were evaluated in different groups of animals through open-field tests and fast-scan cyclic voltammetry. Levels of NAc dopaminergic markers were evaluated by immunohistochemistry. RESULTS: M-amph induced hyperlocomotion in the animals and both DBS parameters reversed this alteration. M-amph increased DA reuptake time post-sham compared to baseline levels, and both LFS and HFS were able to block this alteration. LFS was also able to reduce phasic DA release when compared to baseline. LFS was able to increase dopamine transporter (DAT) expression in the NAc. CONCLUSION: These results demonstrate that both VTA LFS and HFS DBS exert anti-manic effects and modulation of DA dynamics in the NAc. More specifically the increase in DA reuptake driven by increased DAT expression may serve as a potential mechanism by which VTA DBS exerts its anti-manic effects.


Assuntos
Estimulação Encefálica Profunda , Modelos Animais de Doenças , Mania , Metanfetamina , Ratos Wistar , Área Tegmentar Ventral , Animais , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Metanfetamina/farmacologia , Masculino , Ratos , Mania/terapia , Mania/induzido quimicamente , Estimulantes do Sistema Nervoso Central/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Transtorno Bipolar/terapia , Transtorno Bipolar/induzido quimicamente
3.
Analyst ; 149(10): 3008-3016, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38606455

RESUMO

Fast-scan cyclic voltammetry (FSCV) is a widely used technique for detecting neurotransmitters. However, electrode fouling can negatively impact its accuracy and sensitivity. Fouling refers to the accumulation of unwanted materials on the electrode surface, which can alter its electrochemical properties and reduce its sensitivity and selectivity. Fouling mechanisms can be broad and may include biofouling, the accumulation of biomolecules on the electrode surface, and chemical fouling, the deposition of unwanted chemical species. Despite individual studies discussing fouling effects on either the working electrode or the reference electrode, no comprehensive study has been conducted to compare the overall fouling effects on both electrodes in the context of FSCV. Here, we examined the effects of biofouling and chemical fouling on the carbon fiber micro-electrode (CFME) as the working electrode and the Ag/AgCl reference electrode with FSCV. Both fouling mechanisms significantly decreased the sensitivity and caused peak voltage shifts in the FSCV signal with the CFME, but not with the Ag/AgCl reference electrode. Interestingly, previous studies have reported peak voltage shifts in FSCV signals due to the fouling of Ag/AgCl electrodes after implantation in the brain. We noticed in a previous study that energy-dispersive spectroscopy (EDS) spectra showed increased sulfide ion concentration after implantation. We hypothesized that sulfide ions may be responsible for the peak voltage shift. To test this hypothesis, we added sulfide ions to the buffer solution, which decreased the open circuit potential of the Ag/AgCl electrode and caused a peak voltage shift in the FSCV voltammograms. Also, EDS analysis showed that sulfide ion concentration increased on the surface of the Ag/AgCl electrodes after 3 weeks of chronic implantation, necessitating consideration of sulfide ions as the fouling agent for the reference electrodes. Overall, our study provides important insights into the mechanisms of electrode fouling and its impact on FSCV measurements. These findings could inform the design of FSCV experiments, with the development of new strategies for improving the accuracy and reliability of FSCV measurements in vivo.


Assuntos
Incrustação Biológica , Técnicas Eletroquímicas , Neurotransmissores , Neurotransmissores/análise , Incrustação Biológica/prevenção & controle , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Animais , Compostos de Prata/química , Fibra de Carbono/química , Microeletrodos , Sulfetos/química , Eletrodos
4.
Brain ; 146(10): 4174-4190, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37141283

RESUMO

Tourette syndrome is a childhood-onset neuropsychiatric disorder characterized by intrusive motor and vocal tics that can lead to self-injury and deleterious mental health complications. While dysfunction in striatal dopamine neurotransmission has been proposed to underlie tic behaviour, evidence is scarce and inconclusive. Deep brain stimulation (DBS) of the thalamic centromedian parafascicular complex (CMPf), an approved surgical interventive treatment for medical refractory Tourette syndrome, may reduce tics by affecting striatal dopamine release. Here, we use electrophysiology, electrochemistry, optogenetics, pharmacological treatments and behavioural measurements to mechanistically examine how thalamic DBS modulates synaptic and tonic dopamine activity in the dorsomedial striatum. Previous studies demonstrated focal disruption of GABAergic transmission in the dorsolateral striatum of rats led to repetitive motor tics recapitulating the major symptom of Tourette syndrome. We employed this model under light anaesthesia and found CMPf DBS evoked synaptic dopamine release and elevated tonic dopamine levels via striatal cholinergic interneurons while concomitantly reducing motor tic behaviour. The improvement in tic behaviour was found to be mediated by D2 receptor activation as blocking this receptor prevented the therapeutic response. Our results demonstrate that release of striatal dopamine mediates the therapeutic effects of CMPf DBS and points to striatal dopamine dysfunction as a driver for motor tics in the pathoneurophysiology of Tourette syndrome.


Assuntos
Estimulação Encefálica Profunda , Tiques , Síndrome de Tourette , Humanos , Ratos , Animais , Criança , Tiques/terapia , Síndrome de Tourette/terapia , Dopamina , Estimulação Encefálica Profunda/métodos , Tálamo
5.
Neuromodulation ; 27(1): 200-208, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36809871

RESUMO

OBJECTIVES: Motor cortex stimulation (MCS) is an effective technique in treating chronic intractable pain for some patients. However, most studies are small case series (n < 20). Heterogeneity in technique and patient selection makes it difficult to draw consistent conclusions. In this study, we present one of the largest case series of subdural MCS. MATERIALS AND METHODS: Medical records of patients who underwent MCS at our institute between 2007 and 2020 were reviewed. Studies with at least 15 patients were summarized for comparison. RESULTS: The study included 46 patients. Mean age was 56.2 ± 12.5 years (SD). Mean follow-up was 57.2 ± 41.9 months. Male-to-female ratio was 13:33. Of the 46 patients, 29 had neuropathic pain in trigeminal nerve territory/anesthesia dolorosa; nine had postsurgical/posttraumatic pain; three had phantom limb pain; two had postherpetic pain, and the rest had pain secondary to stroke, chronic regional pain syndrome, and tumor. The baseline numeric rating pain scale (NRS) was 8.2 ± 1.8 of 10, and the latest follow-up score was 3.5 ± 2.9 (mean improvement of 57.3%). Responders comprised 67% (31/46)(NRS ≥ 40% improvement). Analysis showed no correlation between percentage of improvement and age (p = 0.352) but favored male patients (75.3% vs 48.7%, p = 0.006). Seizures occurred in 47.8% of patients (22/46) at some point but were all self-limiting, with no lasting sequelae. Other complications included subdural/epidural hematoma requiring evacuation (3/46), infection (5/46), and cerebrospinal fluid leak (1/46). These complications resolved with no long-term sequelae after further interventions. CONCLUSION: Our study further supports the use of MCS as an effective treatment modality for several chronic intractable pain conditions and provides a benchmark to the current literature.


Assuntos
Dor Crônica , Estimulação Encefálica Profunda , Terapia por Estimulação Elétrica , Neuralgia , Dor Intratável , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Dor Intratável/terapia , Neuralgia/terapia , Dor Crônica/terapia , Resultado do Tratamento , Terapia por Estimulação Elétrica/métodos , Estimulação Encefálica Profunda/métodos
6.
Stereotact Funct Neurosurg ; 101(4): 254-264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37454656

RESUMO

BACKGROUND: Implantable pulse generators (IPGs) store energy and deliver electrical impulses for deep brain stimulation (DBS) to treat neurological and psychiatric disorders. IPGs have evolved over time to meet the demands of expanding clinical indications and more nuanced therapeutic approaches. OBJECTIVES: The aim of this study was to examine the workflow of the first 4-lead IPG for DBS in patients with complex disease. METHOD: The engineering capabilities, clinical use cases, and surgical technique are described in a cohort of 12 patients with epilepsy, essential tremor, Parkinson's disease, mixed tremor, and Tourette's syndrome with comorbid obsessive-compulsive disorder between July 2021 and July 2022. RESULTS: This system is a rechargeable 32-channel, 4-port system with independent current control that can be connected to 8 contact linear or directionally segmented leads. The system is ideal for patients with mixed disease or those with multiple severe symptoms amenable to >2 lead implantations. A multidisciplinary team including neurologists, radiologists, and neurosurgeons is necessary to safely plan the procedure. There were no serious intraoperative or postoperative adverse events. One patient required revision surgery for bowstringing. CONCLUSIONS: This new 4-lead IPG represents an important new tool for DBS surgery with the ability to expand lead implantation paradigms for patients with complex disease.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Fontes de Energia Elétrica , Tremor/terapia , Doença de Parkinson/cirurgia
7.
Acta Neurochir (Wien) ; 165(3): 735-739, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36515737

RESUMO

INTRODUCTION: Deep brain stimulation (DBS) is an effective treatment for a number of debilitating neurological diseases. However, the placement of an implantable pulse generator (IPG) can lead to significant cosmetic concerns for some patients. METHODS: We present a subfascial technique of DBS IPG implantation under the breast using a more concealed scar location. The technique is illustrated in a female patient who favored a more aesthetic placement of the DBS to treat essential tremor. Relevant literature of this approach from both breast augmentation and cardiac pacemaker implantation was reviewed. RESULTS: An excellent cosmetic outcome was demonstrated, and reviewing the literature, implanting under the pectoralis major fascia has the potential benefit of reducing complication rates associated with silicone implant placement in the plastic surgery literature when compared to other planes. CONCLUSIONS: The subfascial implantation of IPG was described. This plane, which is used routinely in breast augmentation, has the potential to decrease complication rates compared to placement in the subglandular plane. An inframammary incision provides patients with concerns about the scar and stigmata associated with an infraclavicular location of DBS generator a better cosmetic outcome.


Assuntos
Estimulação Encefálica Profunda , Procedimentos de Cirurgia Plástica , Humanos , Feminino , Estimulação Encefálica Profunda/métodos , Cicatriz , Resultado do Tratamento , Fáscia
8.
J Neurophysiol ; 127(3): 714-724, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986049

RESUMO

Although dopamine is the most implicated neurotransmitter in the mediation of the pathophysiology of addiction, animal studies show serotonin also plays a vital role. Cocaine is one of the most common illicit drugs globally, but the role of serotonin in its mechanism of action is insufficiently characterized. Consequently, we investigated the acute effects of the psychomotor stimulant cocaine on electrical stimulation-evoked serotonin (phasic) release in the nucleus accumbens core (NAcc) of urethane-anesthetized (1.5 g/kg ip) male Sprague-Dawley rats using N-shaped fast-scan cyclic voltammetry (N-FSCV). A single carbon fiber microelectrode was first implanted in the NAcc. Stimulation was applied to the medial forebrain bundle using 60 Hz, 2 ms, 0.2 mA, 2-s biphasic pulses before and after cocaine (2 mg/kg iv) was administered. Stimulation-evoked serotonin release significantly increased 5 min after cocaine injection compared with baseline (153 ± 21 nM vs. 257 ± 12 nM; P = 0.0042; n = 5) but was unaffected by saline injection (1 mL/kg iv; n = 5). N-FSCV's selective measurement of serotonin release in vivo was confirmed pharmacologically via administration of the selective serotonin reuptake inhibitor escitalopram (10 mg/kg ip) that effectively increased the signal in a separate group of rats (n = 5). Selectivity to serotonin was further confirmed in vitro in which dopamine was minimally detected by N-FSCV with a serotonin to dopamine response ratio of 1:0.04 (200 nM of serotonin:1 µM dopamine ratio; P = 0.0048; n = 5 electrodes). This study demonstrates a noteworthy influence of cocaine on serotonin dynamics, and confirms that N-FSCV can effectively and selectively measure phasic serotonin release in the NAcc.NEW & NOTEWORTHY Serotonin plays a vital role in drug addiction. Here, using N-shaped fast-scan cyclic voltammetry, we demonstrated the effect of cocaine on the phasic release of serotonin at the nucleus accumbens core. To the best of our knowledge, this has not previously been elucidated. Our results not only reinforce the role of serotonin in the mechanism of action of cocaine but also help to fill a gap in our knowledge and provide a baseline for future studies in cocaine addiction.


Assuntos
Cocaína , Núcleo Accumbens , Animais , Cocaína/farmacologia , Dopamina/farmacologia , Estimulação Elétrica , Masculino , Ratos , Ratos Sprague-Dawley , Serotonina/farmacologia
9.
Neuromodulation ; 25(2): 161-170, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35125135

RESUMO

OBJECTIVES: Despite recent advances in depression treatment, many patients still do not respond to serial conventional therapies and are considered "treatment resistant." Deep brain stimulation (DBS) has therapeutic potential in this context. This comprehensive review of recent studies of DBS for depression in animal models identifies potential biomarkers for improving therapeutic efficacy and predictability of conventional DBS to aid future development of closed-loop control of DBS systems. MATERIALS AND METHODS: A systematic search was performed in Pubmed, EMBASE, and Cochrane Review using relevant keywords. Overall, 56 animal studies satisfied the inclusion criteria. RESULTS: Outcomes were divided into biochemical/physiological, electrophysiological, and behavioral categories. Promising biomarkers include biochemical assays (in particular, microdialysis and electrochemical measurements), which provide real-time results in awake animals. Electrophysiological tests, showing changes at both the target site and downstream structures, also revealed characteristic changes at several anatomic targets (such as the medial prefrontal cortex and locus coeruleus). However, the substantial range of models and DBS targets limits the ability to draw generalizable conclusions in animal behavioral models. CONCLUSIONS: Overall, DBS is a promising therapeutic modality for treatment-resistant depression. Different outcomes have been used to assess its efficacy in animal studies. From the review, electrophysiological and biochemical markers appear to offer the greatest potential as biomarkers for depression. However, to develop closed-loop DBS for depression, additional preclinical and clinical studies with a focus on identifying reliable, safe, and effective biomarkers are warranted.


Assuntos
Estimulação Encefálica Profunda , Animais , Biomarcadores , Depressão/terapia , Humanos , Modelos Animais
10.
Anal Chem ; 93(48): 15861-15869, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34839667

RESUMO

We previously reported on the use of fast cyclic square wave voltammetry (FCSWV) as a new voltammetric technique. Fourier transform electrochemical impedance spectroscopy (FTEIS) has recently been utilized to provide information that enables a detailed analytical description of an electrified interface. In this study, we report on attempts to combine FTEIS with FCSWV (FTEIS-FCSWV) and demonstrate the feasibility of FTEIS-FCSWV in the in vivo detection of neurotransmitters, thus giving a new type of electrochemical impedance information such as biofouling on the electrode surface. From FTEIS-FCSWV, three new equivalent circuit element voltammograms, consisting of charge-transfer resistance (Rct), solution-resistance (Rs), and double-layer capacitance (Cdl) voltammograms were constructed and investigated in the phasic changes in dopamine (DA) concentrations. As a result, all Rct, Rs, and Cdl voltammograms showed different DA redox patterns and linear trends for the DA concentration (R2 > 0.99). Furthermore, the Rct voltammogram in FTEIS-FCSWV showed lower limit of detection (21.6 ± 15.8 nM) than FSCV (35.8 ± 17.4 nM). FTEIS-FCSWV also showed significantly lower prediction errors than FSCV in selectivity evaluations of unknown mixtures of catecholamines. Finally, Cdl from FTEIS-FCSWV showed a significant relationship with fouling effect on the electrode surface by showing decreased DA sensitivity in both flow injection analysis experiment (r = 0.986) and in vivo experiments. Overall, this study demonstrates the feasibility of FTEIS-FCSWV, which could offer a new type of neurochemical spectroscopic information concerning electrochemical monitoring of neurotransmitters in the brain, and the ability to estimate the degree of sensitivity loss caused by biofouling on the electrode surface.


Assuntos
Espectroscopia Dielétrica , Técnicas Eletroquímicas , Animais , Eletrodos , Estudos de Viabilidade , Análise de Fourier , Neurotransmissores , Ratos , Ratos Sprague-Dawley
11.
Anal Chem ; 93(51): 16987-16994, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34855368

RESUMO

Here, we present the development of a novel voltammetric technique, N-shaped multiple cyclic square wave voltammetry (N-MCSWV) and its application in vivo. It allows quantitative measurements of tonic extracellular levels of serotonin in vivo with mitigated fouling effects. N-MCSWV enriches the electrochemical information by generating high dimensional voltammograms, which enables high sensitivity and selectivity against 5-hydroindoleacetic acid (5-HIAA), dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), histamine, ascorbic acid, norepinephrine, adenosine, and pH. Using N-MCSWV, in combination with PEDOT:Nafion-coated carbon fiber microelectrodes, a tonic serotonin concentration of 52 ± 5.8 nM (n = 20 rats, ±SEM) was determined in the substantia nigra pars reticulata of urethane-anesthetized rats. Pharmacological challenges with dopaminergic, noradrenergic, and serotonergic synaptic reuptake inhibitors supported the ability of N-MCSWV to selectively detect tonic serotonin levels in vivo. Overall, N-MCSWV is a novel voltammetric technique for analytical quantification of serotonin. It offers continuous monitoring of changes in tonic serotonin concentrations in the brain to further our understanding of the role of serotonin in normal behaviors and psychiatric disorders.


Assuntos
Dopamina , Serotonina , Animais , Química Encefálica , Microeletrodos , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo
12.
Anal Chem ; 92(1): 774-781, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31789495

RESUMO

Although N-shaped fast scan cyclic voltammetry (N-FSCV) is well-established as an electroanalytical method to measure extracellular serotonin concentrations in vivo, it is in need of improvement in both sensitivity and selectivity. Based on our previous studies using fast cyclic square-wave voltammetry (FCSWV) for in vivo dopamine measurements, we have modified this technique to optimize the detection of serotonin in vivo. A series of large amplitude square-shaped potentials was superimposed onto an N-shaped waveform to provide cycling through multiple redox reactions within the N-shaped waveform to enhance the sensitivity and selectivity to serotonin measurement when combined with a two-dimensional voltammogram. N-Shaped fast cyclic square-wave voltammetry (N-FCSWV) showed significantly higher sensitivity to serotonin compared to conventional N-FSCV. In addition, N-FCSWV showed better performance than conventional N-shaped FSCV in differentiating serotonin from its major interferents, dopamine and 5-hydroxyindoleascetic acid (5-HIAA). It was also confirmed that the large amplitude of the square waveform did not influence local neuronal activity, and it could monitor electrical stimulation evoked phasic release of serotonin in the rat substantia nigra pars reticulata (SNr) before and after systemic injection of escitalopram (ESCIT, 10 mg/kg i.p.), a serotonin selective reuptake inhibitor.


Assuntos
Técnicas Eletroquímicas/instrumentação , Serotonina/análise , Animais , Química Encefálica , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Masculino , Microeletrodos , Ratos Sprague-Dawley
13.
Trends Analyt Chem ; 1322020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33597790

RESUMO

Dysfunction in dopaminergic neuronal systems underlie a number of neurologic and psychiatric disorders such as Parkinson's disease, drug addiction, and schizophrenia. Dopamine systems communicate via two mechanisms, a fast "phasic" release (sub-second to second) that is related to salient stimuli and a slower "tonic" release (minutes to hours) that regulates receptor tone. Alterations in tonic levels are thought to be more critically important in enabling normal motor, cognitive, and motivational functions, and dysregulation in tonic dopamine levels are associated with neuropsychiatric disorders. Therefore, development of neurochemical recording techniques that enable rapid, selective, and quantitative measurements of changes in tonic extracellular levels are essential in determining the role of dopamine in both normal and disease states. Here, we review state-of-the-art advanced analytical techniques for in vivo detection of tonic levels, with special focus on electrochemical techniques for detection in humans.

14.
Neurosurg Focus ; 49(1): E8, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32610293

RESUMO

The thalamic ventral intermediate nucleus (VIM) can be targeted for treatment of tremor by several procedures, including deep brain stimulation (DBS) and, more recently, MR-guided focused ultrasound (MRgFUS). To date, such targeting has relied predominantly on coordinate-based or atlas-based techniques rather than directly targeting the VIM based on imaging features. While general regional differences of features within the thalamus and some related white matter tracts can be distinguished with conventional imaging techniques, internal nuclei such as the VIM are not discretely visualized. Advanced imaging methods such as quantitative susceptibility mapping (QSM) and fast gray matter acquisition T1 inversion recovery (FGATIR) MRI and high-field MRI pulse sequences that improve the ability to image the VIM region are emerging but have not yet been shown to have reliability and accuracy to serve as the primary method of VIM targeting. Currently, the most promising imaging approach to directly identify the VIM region for clinical purposes is MR diffusion tractography.In this review and update, the capabilities and limitations of conventional and emerging advanced methods for evaluation of internal thalamic anatomy are briefly reviewed. The basic principles of tractography most relevant to VIM targeting are provided for familiarization. Next, the key literature to date addressing applications of DTI and tractography for DBS and MRgFUS is summarized, emphasizing use of direct targeting. This literature includes 1-tract (dentatorubrothalamic tract [DRT]), 2-tract (pyramidal and somatosensory), and 3-tract (DRT, pyramidal, and somatosensory) approaches to VIM region localization through tractography.The authors introduce a 3-tract technique used at their institution, illustrating the oblique curved course of the DRT within the inferior thalamus as well as the orientation and relationship of the white matter tracts in the axial plane. The utility of this 3-tract tractography approach to facilitate VIM localization is illustrated with case examples of variable VIM location, targeting superior to the anterior commissure-posterior commissure plane, and treatment in the setting of pathologic derangement of thalamic anatomy. Finally, concepts demonstrated with these case examples and from the prior literature are synthesized to highlight several potential advantages of tractography for VIM region targeting.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial/terapia , Doença de Parkinson/terapia , Ultrassonografia , Estimulação Encefálica Profunda/métodos , Imagem de Tensor de Difusão/métodos , Substância Cinzenta/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Tálamo/diagnóstico por imagem , Ultrassonografia/métodos , Substância Branca/fisiopatologia
15.
Neurosurg Focus ; 49(1): E6, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32610297

RESUMO

The development of closed-loop deep brain stimulation (DBS) systems represents a significant opportunity for innovation in the clinical application of neurostimulation therapies. Despite the highly dynamic nature of neurological diseases, open-loop DBS applications are incapable of modifying parameters in real time to react to fluctuations in disease states. Thus, current practice for the designation of stimulation parameters, such as duration, amplitude, and pulse frequency, is an algorithmic process. Ideal stimulation parameters are highly individualized and must reflect both the specific disease presentation and the unique pathophysiology presented by the individual. Stimulation parameters currently require a lengthy trial-and-error process to achieve the maximal therapeutic effect and can only be modified during clinical visits. The major impediment to the development of automated, adaptive closed-loop systems involves the selection of highly specific disease-related biomarkers to provide feedback for the stimulation platform. This review explores the disease relevance of neurochemical and electrophysiological biomarkers for the development of closed-loop neurostimulation technologies. Electrophysiological biomarkers, such as local field potentials, have been used to monitor disease states. Real-time measurement of neurochemical substances may be similarly useful for disease characterization. Thus, the introduction of measurable neurochemical analytes has significantly expanded biomarker options for feedback-sensitive neuromodulation systems. The potential use of biomarker monitoring to advance neurostimulation approaches for treatment of Parkinson's disease, essential tremor, epilepsy, Tourette syndrome, obsessive-compulsive disorder, chronic pain, and depression is examined. Further, challenges and advances in the development of closed-loop neurostimulation technology are reviewed, as well as opportunities for next-generation closed-loop platforms.


Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda , Doenças do Sistema Nervoso/terapia , Transtorno Obsessivo-Compulsivo/terapia , Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Humanos , Doença de Parkinson/terapia , Síndrome de Tourette/fisiopatologia
16.
Rev Anal Chem ; 39(1): 188-199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33883813

RESUMO

Neurochemical recording techniques have expanded our understanding of the pathophysiology of neurological disorders, as well as the mechanisms of action of treatment modalities like deep brain stimulation (DBS). DBS is used to treat diseases such as Parkinson's disease, Tourette syndrome, and obsessive-compulsive disorder, among others. Although DBS is effective at alleviating symptoms related to these diseases and improving the quality of life of these patients, the mechanism of action of DBS is currently not fully understood. A leading hypothesis is that DBS modulates the electrical field potential by modifying neuronal firing frequencies to non-pathological rates thus providing therapeutic relief. To address this gap in knowledge, recent advances in electrochemical sensing techniques have given insight into the importance of neurotransmitters, such as dopamine, serotonin, glutamate, and adenosine, in disease pathophysiology. These studies have also highlighted their potential use in tandem with electrophysiology to serve as biomarkers in disease diagnosis and progression monitoring, as well as characterize response to treatment. Here, we provide an overview of disease-relevant neurotransmitters and their roles and implications as biomarkers, as well as innovations to the biosensors used to record these biomarkers. Furthermore, we discuss currently available neurochemical and electrophysiological recording devices, and discuss their viability to be implemented into the development of a closed-loop DBS system.

17.
Acta Neurochir (Wien) ; 161(5): 925-934, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30790089

RESUMO

Phantom limb pain is a complex, incompletely understood pain syndrome that is characterized by chronic painful paresthesias in a previous amputated body part. Limited treatment modalities exist that provide meaningful relief, including pharmacological treatments and spinal cord stimulation that are rarely successful for refractory cases. Here, we describe our two-patient cohort with recalcitrant upper extremity phantom limb pain treated with chronic subdural cortical stimulation. The patient with evidence of cortical reorganization and almost 60 years of debilitating phantom limb pain experienced sustained analgesic relief at a follow-up period of 6 months. The second patient became tolerant to the stimulation and his pain returned to baseline at a 1-month follow-up. Our unique case series report adds to the growing body of literature suggesting critical appraisal before widespread implementation of cortical stimulation for phantom limb pain can be considered.


Assuntos
Estimulação Encefálica Profunda/métodos , Membro Fantasma/terapia , Braço/fisiopatologia , Estimulação Encefálica Profunda/instrumentação , Eletrodos Implantados , Humanos , Masculino , Pessoa de Meia-Idade , Espaço Subdural/fisiopatologia
18.
Neuromodulation ; 22(3): 244-252, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30840354

RESUMO

BACKGROUND: Traumatic spinal cord injury (SCI) disrupts signaling pathways between the brain and spinal networks below the level of injury. In cases of severe SCI, permanent loss of sensorimotor and autonomic function can occur. The standard of care for severe SCI uses compensation strategies to maximize independence during activities of daily living while living with chronic SCI-related dysfunctions. Over the past several years, the research field of spinal neuromodulation has generated promising results that hold potential to enable recovery of functions via epidural electrical stimulation (EES). METHODS: This review provides a historical account of the translational research efforts that led to the emergence of EES of the spinal cord to enable intentional control of motor functions that were lost after SCI. We also highlight the major limitations associated with EES after SCI and propose future directions of spinal neuromodulation research. RESULTS: Multiple, independent studies have demonstrated return of motor function via EES in individuals with chronic SCI. These enabled motor functions include intentional, controlled movement of previously paralyzed extremities, independent standing and stepping, and increased grip strength. In addition, improvements in cardiovascular health, respiratory function, body composition, and urologic function have been reported. CONCLUSIONS: EES holds promise to enable functions thought to be permanently lost due to SCI. However, EES is currently restricted to scientific investigation in humans with SCI and requires further validation of factors such as safety and efficacy before clinical translation.


Assuntos
Espaço Epidural/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/terapia , Estimulação da Medula Espinal/tendências , Humanos , Córtex Sensório-Motor/fisiologia , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Estimulação da Medula Espinal/métodos
19.
Anal Chem ; 90(22): 13348-13355, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30358389

RESUMO

Although fast-scan cyclic voltammetry (FSCV) has been widely used for in vivo neurochemical detection, the sensitivity and selectivity of the technique can be further improved. In this study, we develop fast cyclic square-wave voltammetry (FCSWV) as a novel voltammetric technique that combines large-amplitude cyclic square-wave voltammetry (CSWV) with background subtraction. A large-amplitude, square-shaped potential was applied to induce cycling through multiple redox reactions within a square pulse to increase sensitivity and selectivity when combined with a two-dimensional voltammogram. As a result, FCSWV was significantly more sensitive than FSCV ( n = 5 electrodes, two-way ANOVA, p = 0.0002). In addition, FCSWV could differentiate dopamine from other catecholamines (e.g., epinephrine and norepinephrine) and serotonin better than conventional FSCV. With the confirmation that FCSWV did not influence local neuronal activity, despite the large amplitude of the square waveform, it could monitor electrically induced phasic changes in dopamine release in rat striatum before and after injecting nomifensine, a dopamine reuptake inhibitor.


Assuntos
Técnicas Eletroquímicas/métodos , Neurotransmissores/análise , Animais , Corpo Estriado/metabolismo , Dopamina/análise , Epinefrina/análise , Masculino , Camundongos , Norepinefrina/análise , Ratos Sprague-Dawley , Sensibilidade e Especificidade , Serotonina/análise
20.
Magn Reson Med ; 79(2): 1043-1051, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28488326

RESUMO

PURPOSE: The homeostasis of intracranial pressure (ICP) is of paramount importance for maintaining normal brain function. A noninvasive technique capable of making direct measurements of ICP currently does not exist. MR elastography (MRE) is capable of noninvasively measuring brain tissue stiffness in vivo, and may act as a surrogate to measure ICP. The objective of this study was to investigate the impact of changing ICP on brain stiffness using MRE in a swine model. METHODS: Baseline MRE measurements were obtained, and then catheters were surgically placed into the left and right lateral ventricles of three animals. ICP was systematically increased over the range of 0 to 55 millimeters mercury (mmHg), and stiffness measurements were made using brain MRE at vibration frequencies of 60 hertz (Hz), 90 Hz, 120 Hz, and 150 Hz. RESULTS: A significant linear correlation between stiffness and ICP in the cross-subject comparison was observed for all tested vibrational frequencies (P ≤ 0.01). The 120 Hz (0.030 ± 0.004 kilopascal (kPa)/mmHg, P < 0.0001) and 150 Hz (0.031 ± 0.008 kPa/mmHg, P = 0.01) vibrational frequencies had nearly identical slopes, which were approximately two- to three-fold higher than the 90 Hz (0.017 ± 0.002 kPa/mmHg, P < 0.0001) and 60 Hz (0.009 ± 0.002 kPa/mmHg, P = 0.001) slopes, respectively. CONCLUSION: In this study, MRE demonstrated the potential for noninvasive measurement of changes in ICP. Magn Reson Med 79:1043-1051, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Técnicas de Imagem por Elasticidade/métodos , Pressão Intracraniana/fisiologia , Imageamento por Ressonância Magnética/métodos , Animais , Estudos de Viabilidade , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa