Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Semin Immunol ; 54: 101523, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34776300

RESUMO

Granulocyte macrophage-colony stimulating factor (GM-CSF) was originally identified as a growth factor for its ability to promote the proliferation and differentiation in vitro of bone marrow progenitor cells into granulocytes and macrophages. Many preclinical studies, using GM-CSF deletion or depletion approaches, have demonstrated that GM-CSF has a wide range of biological functions, including the mediation of inflammation and pain, indicating that it can be a potential target in many inflammatory and autoimmune conditions. This review provides a brief overview of GM-CSF biology and signaling, and summarizes the findings from preclinical models of a range of inflammatory and autoimmune disorders and the latest clinical trials targeting GM-CSF or its receptor in these disorders.


Assuntos
Doenças Autoimunes , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Doenças Autoimunes/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Granulócitos/metabolismo , Humanos , Inflamação , Macrófagos
2.
Osteoarthritis Cartilage ; 32(11): 1413-1418, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844159

RESUMO

OBJECTIVE: We have previously reported that the interleukin-23 p19 subunit (IL-23p19) is required for experimental inflammatory arthritic pain-like behavior and disease. Even though inflammation is often a characteristic feature of osteoarthritis (OA), IL-23 is not usually considered as a therapeutic target in OA. We began to explore the role of IL-23p19 in OA pain and disease utilizing mouse models of OA and patient samples. DESIGN: The role of IL-23p19 in two mouse models of OA, namely collagenase-induced OA and monosodium iodoacetate-induced OA, was investigated using gene-deficient male mice. Pain-like behavior and arthritis were assessed by relative static weight distribution and histology, respectively. In knee synovial tissues from a small cohort of human OA patients, a correlation analysis was performed between IL-23A gene expression and Oxford knee score (OKS), a validated Patient Reported Outcome Measure. RESULTS: We present evidence that i) IL-23p19 is required for the development of pain-like behavior and optimal disease, including cartilage damage and osteophyte formation, in two experimental OA models and ii) IL-23A gene expression in OA knee synovial tissues correlates with a lower OKS (r = -0.742, p = 0.0057). CONCLUSIONS: The findings support the possible targeting of IL-23 as a treatment for OA pain and disease progression.


Assuntos
Subunidade p19 da Interleucina-23 , Osteoartrite do Joelho , Animais , Masculino , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/genética , Humanos , Camundongos , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Artrite Experimental/metabolismo , Modelos Animais de Doenças , Artralgia/genética , Artralgia/metabolismo , Dor/etiologia , Dor/metabolismo , Camundongos Knockout , Pessoa de Meia-Idade , Idoso , Feminino , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Ácido Iodoacético
3.
Cytokine ; 179: 156619, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38669908

RESUMO

Interleukin (IL)-23 is implicated in the pathogenesis of several inflammatory diseases and is usually linked with helper T cell (Th17) biology. However, there is some data linking IL-23 with innate immune biology in such diseases. We therefore examined the effects of IL-23p19 genetic deletion and/or neutralization on in vitro macrophage activation and in an innate immune-driven peritonitis model. We report that endogenous IL-23 was required for maximal macrophage activation by zymosan as determined by pro-inflammatory cytokine production, including a dramatic upregulation of granulocyte-colony stimulating factor (G-CSF). Furthermore, both IL-23p19 genetic deletion and neutralization in zymosan-induced peritonitis (ZIP) led to a specific reduction in the neutrophil numbers, as well as a reduction in the G-CSF levels in exudate fluids. We conclude that endogenous IL-23 can contribute significantly to macrophage activation during an inflammatory response, mostly likely via an autocrine/paracrine mechanism; of note, endogenous IL-23 can directly up-regulate macrophage G-CSF expression, which in turn is likely to contribute to the regulation of IL-23-dependent neutrophil number and function during an inflammatory response, with potential significance for IL-23 targeting particularly in neutrophil-associated inflammatory diseases.


Assuntos
Inflamação , Interleucina-23 , Células Mieloides , Neutrófilos , Zimosan , Animais , Inflamação/metabolismo , Inflamação/imunologia , Interleucina-23/metabolismo , Camundongos , Neutrófilos/metabolismo , Neutrófilos/imunologia , Células Mieloides/metabolismo , Peritonite/metabolismo , Peritonite/imunologia , Camundongos Endogâmicos C57BL , Fator Estimulador de Colônias de Granulócitos/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Macrófagos/imunologia , Subunidade p19 da Interleucina-23/metabolismo , Subunidade p19 da Interleucina-23/genética , Camundongos Knockout
4.
Immunol Cell Biol ; 101(7): 600-609, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36975092

RESUMO

Chemokine (C-C) ligand 17 (CCL17) was first identified as thymus- and activation-regulated chemokine when it was found to be constitutively expressed in the thymus and identified as a T-cell chemokine. This chemoattractant molecule has subsequently been found at elevated levels in a range of autoimmune and inflammatory diseases, as well as in cancer. CCL17 is a C-C chemokine receptor type 4 (CCR4) ligand, with chemokine (C-C) ligand 22 being the other major ligand and, as CCR4 is highly expressed on helper T cells, CCL17 can play a role in T-cell-driven diseases, usually considered to be via its chemotactic activity on T helper 2 cells; however, given that CCR4 is also expressed by other cell types and there is elevated expression of CCL17 in many diseases, a broader CCL17 biology is suggested. In this review, we summarize the biology of CCL17, its regulation and its potential contribution to the pathogenesis of various preclinical models. Reference is made, for example, to recent literature indicating a role for CCL17 in the control of pain as part of a granulocyte macrophage-colony-stimulating factor/CCL17 pathway in lymphocyte-independent models and thus not as a T-cell chemokine. The review also discusses the potential for CCL17 to be a biomarker and a therapeutic target in human disorders.


Assuntos
Autoimunidade , Receptores de Quimiocinas , Humanos , Ligantes , Receptores de Quimiocinas/metabolismo , Quimiocina CCL17/metabolismo , Quimiocinas , Inflamação
5.
Osteoarthritis Cartilage ; 31(10): 1327-1341, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37225052

RESUMO

OBJECTIVES: We have previously identified a granulocyte macrophage-colony stimulating factor (GM-CSF)/C-C motif ligand 17 (CCL17) pathway in monocytes/macrophages, in which GM-CSF regulates the formation of CCL17, and it is important for an experimental osteoarthritis (OA) model. We explore here additional OA models, including in the presence of obesity, such as a requirement for this pathway. DESIGN: The roles of GM-CSF, CCL17, CCR4, and CCL22 in various experimental OA models, including those incorporating obesity (eight-week high-fat diet), were investigated using gene-deficient male mice. Pain-like behavior and arthritis were assessed by relative static weight distribution and histology, respectively. Cell populations (flow cytometry) and cytokine messenger RNA (mRNA) expression (qPCR) in knee infrapatellar fat pad were analyzed. Human OA sera were collected for circulating CCL17 levels (ELISA) and OA knee synovial tissue for gene expression (qPCR). RESULTS: We present evidence that: i) GM-CSF, CCL17, and CCR4, but not CCL22, are required for the development of pain-like behavior and optimal disease in three experimental OA models, as well as for exacerbated OA development due to obesity, ii) obesity alone leads to spontaneous knee joint damage in a GM-CSF- and CCL17-dependent manner, and iii) in knee OA patients, early indications are that BMI correlates with a lower Oxford Knee Score (r = -0.458 and p = 0.0096), with elevated circulating CCL17 levels (r = 0.2108 and p = 0.0153) and with elevated GM-CSF and CCL17 gene expression in OA synovial tissue. CONCLUSIONS: The above findings indicate that GM-CSF, CCL17, and CCR4 are involved in obesity-associated OA development, broadening their potential as targets for possible treatments for OA.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Osteoartrite do Joelho , Humanos , Masculino , Animais , Camundongos , Citocinas , Dor , Osteoartrite do Joelho/etiologia , Membrana Sinovial/metabolismo , Quimiocina CCL17
6.
J Immunol ; 205(1): 213-222, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32461237

RESUMO

It has been reported that a GM-CSF→CCL17 pathway, originally identified in vitro in macrophage lineage populations, is implicated in the control of inflammatory pain, as well as arthritic pain and disease. We explore, in this study and in various inflammation models, the cellular CCL17 expression and its GM-CSF dependence as well as the function of CCL17 in inflammation and pain. This study used models allowing the convenient cell isolation from Ccl17E/+ reporter mice; it also exploited both CCL17-dependent and unique CCL17-driven inflammatory pain and arthritis models, the latter permitting a radiation chimera approach to help identify the CCL17 responding cell type(s) and the mediators downstream of CCL17 in the control of inflammation and pain. We present evidence that 1) in the particular inflammation models studied, CCL17 expression is predominantly in macrophage lineage populations and is GM-CSF dependent, 2) for its action in arthritic pain and disease development, CCL17 acts on CCR4+ non-bone marrow-derived cells, and 3) for inflammatory pain development in which a GM-CSF→CCL17 pathway appears critical, nerve growth factor, CGRP, and substance P all appear to be required.


Assuntos
Artrite Experimental/imunologia , Quimiocina CCL17/metabolismo , Dor/imunologia , Peritonite/imunologia , Pneumonia/imunologia , Animais , Artrite Experimental/complicações , Artrite Experimental/patologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Quimiocina CCL17/genética , Genes Reporter/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Fator de Crescimento Neural/metabolismo , Dor/diagnóstico , Dor/patologia , Medição da Dor , Peritonite/complicações , Peritonite/patologia , Pneumonia/complicações , Pneumonia/patologia , Transdução de Sinais/imunologia , Substância P/metabolismo
7.
Arthritis Res Ther ; 26(1): 148, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107827

RESUMO

OBJECTIVES: We have previously reported using gene-deficient mice that the interleukin (IL)-23p19 subunit is required for the development of innate immune-driven arthritic pain and disease. We aimed to explore here, using a number of in vivo approaches, how the IL-23p19 subunit can mechanistically control arthritic pain and disease in a T- and B- lymphocyte-independent manner. METHODS: We used the zymosan-induced arthritis (ZIA) model in wild-type and Il23p19-/- mice, by a radiation chimera approach, and by single cell RNAseq and qPCR analyses, to identify the IL23p19-expressing and IL-23-responding cell type(s) in the inflamed joints. This model was also utilized to investigate the efficacy of IL-23p19 subunit blockade with a neutralizing monoclonal antibody (mAb). A novel IL-23-driven arthritis model was established, allowing the identification of putative downstream mediators of IL-23 in the control of pain and disease. Pain and arthritis were assessed by relative static weight distribution and histology, respectively. RESULTS: We present evidence that (i) IL-23p19+ non-bone marrow-derived macrophages are required for the development of ZIA pain and disease, (ii) prophylactic and therapeutic blockade of the IL-23p19 subunit ameliorate ZIA pain and disease and (iii) systemically administered IL-23 can induce arthritic pain and disease in a manner dependent on TNF, GM-CSF, CCL17 and cyclooxygenase activity, but independently of lymphocytes, CGRP, NGF and substance P. CONCLUSIONS: The data presented should aid IL-23 targeting both in the choice of inflammatory disease to be treated and the design of clinical trials.


Assuntos
Artrite Experimental , Camundongos Endogâmicos C57BL , Camundongos Knockout , Animais , Masculino , Camundongos , Artrite Experimental/imunologia , Artrite Experimental/patologia , Inflamação/imunologia , Inflamação/metabolismo , Interleucina-23/metabolismo , Interleucina-23/imunologia , Subunidade p19 da Interleucina-23/imunologia , Subunidade p19 da Interleucina-23/antagonistas & inibidores , Subunidade p19 da Interleucina-23/genética , Dor/etiologia , Zimosan
8.
iScience ; 26(10): 108079, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37860753

RESUMO

Glucocorticoids (GCs) are potent anti-inflammatory agents and are broadly used in treating rheumatoid arthritis (RA) patients, albeit with adverse side effects associated with long-term usage. The negative consequences of GC therapy provide an impetus for research into gaining insights into the molecular mechanisms of GC action. We have previously reported that granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced CCL17 has a non-redundant role in inflammatory arthritis. Here, we provide molecular evidence that GCs can suppress GM-CSF-mediated upregulation of IRF4 and CCL17 expression via downregulating JMJD3 expression and activity. In mouse models of inflammatory arthritis, GC treatment inhibited CCL17 expression and ameliorated arthritic pain-like behavior and disease. Significantly, GC treatment of RA patient peripheral blood mononuclear cells ex vivo resulted in decreased CCL17 production. This delineated pathway potentially provides new therapeutic options for the treatment of many inflammatory conditions, where GCs are used as an anti-inflammatory drug but without the associated adverse side effects.

9.
Arthritis Res Ther ; 24(1): 89, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468842

RESUMO

Current understanding of IL-23 biology, with its link to other pro-inflammatory cytokines, for example, IL-17 and granulocyte macrophage-colony stimulating factor (GM-CSF), is primarily focused on T lymphocyte-mediated inflammation/autoimmunity. Pain is a significant symptom associated with many musculoskeletal conditions leading to functional impairment and poor quality of life. While the role of IL-23 in arthritis has been studied in mouse models of adaptive immune-mediated arthritis using targeted approaches (e.g., monoclonal antibody (mAb) neutralization), the literature on IL-23 and arthritis pain is limited. Encouragingly, the anti-IL-23p19 mAb, guselkumab, reduces pain in psoriatic arthritis patients. Recent evidence has suggested a new biology for IL-23, whereby IL-23 is required in models of innate immune-mediated arthritis and its associated pain with its action being linked to a GM-CSF-dependent pathway (the so-called GM-CSF➔CCL17 pathway). This Commentary discusses the current understanding of potential cytokine networks involving IL-23 in arthritis pain and provides a rationale for future clinical studies targeting IL-23p19 in arthritis pain.


Assuntos
Artrite , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Animais , Humanos , Interleucina-23 , Subunidade p19 da Interleucina-23 , Camundongos , Dor , Qualidade de Vida
10.
Immunotargets Ther ; 9: 225-240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33150139

RESUMO

The cytokine, granulocyte macrophage-colony stimulating factor (GM-CSF), was firstly identified as being able to induce in vitro the proliferation and differentiation of bone marrow progenitors into granulocytes and macrophages. Much preclinical data have indicated that GM-CSF has a wide range of functions across different tissues in its action on myeloid cells, and GM-CSF deletion/depletion approaches indicate its potential as an important therapeutic target in several inflammatory and autoimmune disorders, for example, rheumatoid arthritis. In this review, we discuss briefly the biology of GM-CSF, raise some current issues and questions pertaining to this biology, summarize the results from preclinical models of a range of inflammatory and autoimmune disorders and list the latest clinical trials evaluating GM-CSF blockade in such disorders.

11.
Nat Rev Immunol ; 20(8): 507-514, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32576980

RESUMO

Therapeutics against coronavirus disease 2019 (COVID-19) are urgently needed. Granulocyte-macrophage colony-stimulating factor (GM-CSF), a myelopoietic growth factor and pro-inflammatory cytokine, plays a critical role in alveolar macrophage homeostasis, lung inflammation and immunological disease. Both administration and inhibition of GM-CSF are currently being therapeutically tested in COVID-19 clinical trials. This Perspective discusses the pleiotropic biology of GM-CSF and the scientific merits behind these contrasting approaches.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Pneumonia Viral/tratamento farmacológico , COVID-19 , Ensaios Clínicos como Assunto , Humanos , Pandemias , SARS-CoV-2
12.
Arthritis Res Ther ; 22(1): 123, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471485

RESUMO

BACKGROUND: The cytokine, interleukin-23 (IL-23), can be critical for the progression of inflammatory diseases, including arthritis, and is often associated with T lymphocyte biology. We previously showed that certain lymphocyte-independent, inflammatory arthritis and pain models have a similar requirement for tumour necrosis factor (TNF), granulocyte macrophage-colony stimulating factor (GM-CSF), and C-C motif ligand 17 (CCL17). Given this correlation in cytokine requirements, we explored whether IL-23 might interact with this cytokine cluster in the control of arthritic and inflammatory pain. METHODS: The role of IL-23 in the development of pain-like behaviour was investigated using mouse arthritis models (zymosan-induced arthritis and GM-CSF-, TNF-, and CCL17-driven monoarticular arthritis) and inflammatory pain models (intraplantar zymosan, GM-CSF, TNF, and CCL17). Additionally, IL-23-induced inflammatory pain was measured in GM-CSF-/-, Tnf-/-, and Ccl17E/E mice and in the presence of indomethacin. Pain-like behaviour and arthritis were assessed by relative weight distribution in hindlimbs and histology, respectively. Cytokine mRNA expression in knees and paw skin was analysed by quantitative PCR. Blood and synovial cell populations were analysed by flow cytometry. RESULTS: We report, using Il23p19-/- mice, that innate immune (zymosan)-driven arthritic pain-like behaviour (herein referred to as pain) was completely dependent upon IL-23; optimal arthritic disease development required IL-23 (P < 0.05). Zymosan-induced inflammatory pain was also completely dependent on IL-23. In addition, we found that exogenous TNF-, GM-CSF-, and CCL17-driven arthritic pain, as well as inflammatory pain driven by each of these cytokines, were absent in Il23p19-/- mice; optimal disease in these mBSA-primed models was dependent on IL-23 (P < 0.05). Supporting this cytokine connection, it was found conversely that IL-23 (200 ng) can induce inflammatory pain at 4 h (P < 0.0001) with a requirement for each of the other cytokines as well as cyclooxygenase activity. CONCLUSIONS: These findings indicate a role for IL-23 in innate immune-mediated arthritic and inflammatory pain with potential links to TNF, GM-CSF, CCL17, and eicosanoid function.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Interleucina-23 , Animais , Citocinas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Camundongos , Dor , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa