Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 51(11): 6044-6052, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28462990

RESUMO

Sediment samples from the East China and Yellow seas collected adjacent to continental China were found to have lower δ15N values (expressed as δ15N = [15N:14Nsample/15N:14Nair - 1] × 1000‰; the sediment 15N:14N ratio relative to the air nitrogen 15N:14N ratio). In contrast, the Arctic sediments from the Chukchi Sea, the sampling region furthest from China, showed higher δ15N values (2-3‰ higher than those representing the East China and the Yellow sea sediments). Across the sites sampled, the levels of sediment δ15N increased with increasing distance from China, which is broadly consistent with the decreasing influence of anthropogenic nitrogen (NANTH) resulting from fossil fuel combustion and fertilizer use. We concluded that, of several processes, the input of NANTH appears to be emerging as a new driver of change in the sediment δ15N value in marginal seas adjacent to China. The present results indicate that the effect of NANTH has extended beyond the ocean water column into the deep sedimentary environment, presumably via biological assimilation of NANTH followed by deposition. Further, the findings indicate that NANTH is taking over from the conventional paradigm of nitrate flux from nitrate-rich deep water as the primary driver of biological export production in this region of the Pacific Ocean.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Nitrogênio , Regiões Árticas , China , Oceanos e Mares , Oceano Pacífico
2.
Proc Natl Acad Sci U S A ; 109(31): 12604-9, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22814379

RESUMO

Survival of free-living and symbiotic dinoflagellates (Symbiodinium spp.) in coral reefs is critical to the maintenance of a healthy coral community. Most coral reefs exist in oligotrophic waters, and their survival strategy in such nutrient-depleted waters remains largely unknown. In this study, we found that two strains of Symbiodinium spp. cultured from the environment and acquired from the tissues of the coral Alveopora japonica had the ability to feed heterotrophically. Symbiodinium spp. fed on heterotrophic bacteria, cyanobacteria (Synechococcus spp.), and small microalgae in both nutrient-replete and nutrient-depleted conditions. Cultured free-living Symbiodinium spp. displayed no autotrophic growth under nitrogen-depleted conditions, but grew when provided with prey. Our results indicate that Symbiodinium spp.'s mixotrophic activity greatly increases their chance of survival and their population growth under nitrogen-depleted conditions, which tend to prevail in coral habitats. In particular, free-living Symbiodinium cells acquired considerable nitrogen from algal prey, comparable to or greater than the direct uptake of ammonium, nitrate, nitrite, or urea. In addition, free-living Symbiodinium spp. can be a sink for planktonic cyanobacteria (Synechococcus spp.) and remove substantial portions of Synechococcus populations from coral reef waters. Our discovery of Symbiodinium's feeding alters our conventional views of the survival strategies of photosynthetic Symbiodinium and corals.


Assuntos
Dinoflagellida/genética , Dinoflagellida/metabolismo , Genes de Protozoários , Sequência de Bases , Recifes de Corais , Dinoflagellida/citologia , Dados de Sequência Molecular , Nitrogênio/metabolismo , Synechococcus/metabolismo , Microbiologia da Água
3.
Anal Chem ; 86(3): 1352-6, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24428718

RESUMO

The global sulfur cycle depends primarily on the metabolism of marine microorganisms, which release sulfur gas into the atmosphere and thus affect the redistribution of sulfur globally as well as the earth's climate system. To better quantify sulfur release from the ocean, analysis of the production and distribution of organic sulfur in the ocean is necessary. This report describes a wet-based method for accurate analysis of particulate organic sulfur (POS) in the marine environment. The proposed method overcomes the considerable loss of sulfur (up to 80%) that occurs during analysis using conventional methods involving drying. Use of the wet-based POS extraction procedure in conjunction with a sensitive sulfur analyzer enabled accurate measurements of cellular POS. Data obtained using this method will enable accurate assessment of how rapidly sulfur can transfer among pools. Such information will improve understanding of the role of POS in the oceanic sulfur cycle.

4.
J Eukaryot Microbiol ; 61(1): 27-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24102740

RESUMO

To investigate heterotrophic protists grazing on Symbiodinium sp., we tested whether the common heterotrophic dinoflagellates Gyrodinium dominans, Gyrodinium moestrupii, Gyrodinium spirale, Oblea rotundata, Oxyrrhis marina, and Polykrikos kofoidii and the ciliates Balanion sp. and Parastrombidinopsis sp. preyed on the free-living dinoflagellate Symbiodinium sp. (clade E). We measured the growth and ingestion rates of O. marina and G. dominans on Symbiodinium sp. as a function of prey concentration. Furthermore, we compared the results to those obtained for other algal prey species. In addition, we measured the growth and ingestion rates of other predators at single prey concentrations at which these rates of O. marina and G. dominans were saturated. All predators tested in the present study, except Balanion sp., preyed on Symbiodinium sp. The specific growth rates of O. marina and G. dominans on Symbiodinium sp. increased rapidly with increasing mean prey concentration < ca. 740-815 ng C/ml (7,400-8,150 cells/ml), but became saturated at higher concentrations. The maximum growth rates of O. marina and G. dominans on Symbiodinium sp. (0.87 and 0.61/d) were much higher than those of G. moestrupii and P. kofoidii (0.11 and 0.04/d). Symbiodinium sp. did not support positive growth of G. spirale, O. rotundata, and Parastrombidinopsis sp. However, the maximum ingestion rates of P. kofoidii and Parastrombidinopsis sp. (6.7-10.0 ng C/predator/d) were much higher than those of O. marina and G. dominans on Symbiodinium sp. (1.9-2.1 ng C/predator/d). The results of the present study suggest that Symbiodinium sp. may increase or maintain the populations of some predators.


Assuntos
Alveolados , Cilióforos/fisiologia , Dinoflagellida/fisiologia , Cilióforos/crescimento & desenvolvimento , Dinoflagellida/crescimento & desenvolvimento , Comportamento Alimentar
5.
Environ Sci Technol ; 48(9): 4750-6, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24724561

RESUMO

Oceanic dimethyl sulfide (DMS) is the enzymatic cleavage product of the algal metabolite dimethylsulfoniopropionate (DMSP) and is the most abundant form of sulfur released into the atmosphere. To investigate the effects of two emerging environmental threats (ocean acidification and warming) on marine DMS production, we performed a large-scale perturbation experiment in a coastal environment. At both ambient temperature and ∼ 2 °C warmer, an increase in partial pressure of carbon dioxide (pCO2) in seawater (160-830 ppmv pCO2) favored the growth of large diatoms, which outcompeted other phytoplankton species in a natural phytoplankton assemblage and reduced the growth rate of smaller, DMSP-rich phototrophic dinoflagellates. This decreased the grazing rate of heterotrophic dinoflagellates (ubiquitous micrograzers), resulting in reduced DMS production via grazing activity. Both the magnitude and sign of the effect of pCO2 on possible future oceanic DMS production were strongly linked to pCO2-induced alterations to the phytoplankton community and the cellular DMSP content of the dominant species and its association with micrograzers.


Assuntos
Dióxido de Carbono/análise , Sulfetos/metabolismo , Zooplâncton/fisiologia , Animais , Atmosfera , Pressão Parcial , Fitoplâncton/metabolismo , Fitoplâncton/fisiologia , Água do Mar/química , Compostos de Sulfônio , Enxofre/metabolismo , Zooplâncton/metabolismo
6.
Sci Adv ; 10(13): eadl0779, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552016

RESUMO

Marine biogenic calcium carbonate (CaCO3) cycles play a key role in ecosystems and in regulating the ocean's ability to absorb atmospheric carbon dioxide (CO2). However, the drivers and magnitude of CaCO3 cycling are not well understood, especially for the upper ocean. Here, we provide global-scale evidence that heterotrophic respiration in settling marine aggregates may produce localized undersaturated microenvironments in which CaCO3 particles rapidly dissolve, producing excess alkalinity in the upper ocean. In the deep ocean, dissolution of CaCO3 is primarily driven by conventional thermodynamics of CaCO3 solubility with reduced fluxes of CaCO3 burial to marine sediments beneath more corrosive North Pacific deep waters. Upper ocean dissolution, shown to be sensitive to ocean export production, can increase the neutralizing capacity for respired CO2 by up to 6% in low-latitude thermocline waters. Without upper ocean dissolution, the ocean might lose 20% more CO2 to the atmosphere through the low-latitude upwelling regions.

7.
Mar Pollut Bull ; 201: 116262, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513602

RESUMO

This study investigated the carbonate system and air-sea CO2 exchange in the inshore waters along South Korea's western coastline in 2020. Overlooking these waters might introduce significant errors in estimating air-sea CO2 fluxes of the southeastern Yellow Sea, given their interaction with land, offshore regions, and sediments. During periods other than summer, seasonal variations in seawater CO2 partial pressure (pCO2) could be generally explained by thermal effects. Tidal mixing and shallow depths resulted in weaker stratification-induced carbon export compared to offshore regions. However, during summer, inshore waters exhibited high spatial variability in pCO2, ranging from approximately 185 to 1000 µatm. In contrast to offshore waters that modestly absorbed CO2, inshore waters shallower than 20 m emitted ∼100 Gg C yr-1 to the atmosphere. However, considering the high heterogeneity of the study area, additional observations with high spatial and temporal resolution are required to refine estimates of air-sea CO2 exchange.


Assuntos
Dióxido de Carbono , Água do Mar , Carbono , Carbonatos , Atmosfera
8.
Mar Pollut Bull ; 200: 116035, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38271917

RESUMO

The supply and sources of N and Hg in the Geum estuary of the western coast of Korea were evaluated. Triple isotope proxies (δ15NNO3, Δ17ONO3 and δ18ONO3) of NO3- combined with conservative mixing between river and ocean waters were used to improve isotope finger-printing methods. The N pool in the Geum estuary was primarily influenced by the Yellow Sea water, followed by riverine discharge (821 × 106 mol yr-1) and atmospheric deposition (51 × 106 mol yr-1). The influence of the river was found to be greater for Hg than that of the atmosphere. The triple isotope proxies revealed that the riverine and atmospheric inputs of N have been affected by septic wastes and fossil fuel burning, respectively. From the inner estuary towards offshore region, the influence of the river diminishes, thus increasing the relative impact of the atmosphere. Moreover, the isotope proxies showed a significant influence of N assimilation in February and nitrification in May.


Assuntos
Mercúrio , Poluentes Químicos da Água , Isótopos de Nitrogênio/análise , Estuários , Ecossistema , Monitoramento Ambiental/métodos , Rios , Poluentes Químicos da Água/análise , Nitratos/análise
9.
Sci Total Environ ; 891: 164404, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245801

RESUMO

Understanding sources and processes affecting atmospheric mercury (Hg) are key to enabling targeted Hg managements under the Minamata Convention on Mercury. We employed stable isotopes (δ202Hg, Δ199Hg, Δ201Hg, Δ200Hg, Δ204Hg) and backward air trajectories to characterize sources and processes affecting total gaseous Hg (TGM) and particulate bound Hg (PBM) in a coastal city, South Korea, subjected to atmospheric Hg sources of a local steel manufacturing industry, coastal evasion from the East Sea, and long-distance transport from East Asian countries. Based on the simulated airmasses and the isotopic comparison with TGM characterized from other urban, remote, and coastal sites, TGM evaded from the coastal surface of the East Sea (warm seasons) and from the land surface in high latitude regions (cold seasons) act as important sources relative to local anthropogenic emissions at our study location. Conversely, a significant relationship between Δ199Hg and concentrations of PBM (r2 = 0.39, p < 0.05) and a seasonally uniform Δ199Hg/Δ201Hg slope (1.15), except for summer (0.26), suggest that PBM is generally sourced from local anthropogenic emissions and subjected to Hg2+ photo-reduction on particles. The striking isotopic similarity between our PBM (δ202Hg; -0.86 to 0.49 ‰, Δ199Hg; -0.15 to 1.10 ‰) and those previously characterized along the coastal and offshore regions of the Northwest Pacific (δ202Hg; -0.78 to 1.1 ‰, Δ199Hg; -0.22 to 0.47 ‰) infer that anthropogenically emitted PBM from East Asia and those processed in the coastal atmosphere serves as a regional isotopic end-member. The implementation of air pollution control devices can reduce local PBM, while regional and/or multilateral efforts are required to manage TGM evasion and transport. We also anticipate that the regional isotopic end-member can be used to quantify the relative influence of local anthropogenic Hg emissions and complex processes affecting PBM in East Asia and other coastal regions.

10.
Sci Total Environ ; 879: 163020, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36965732

RESUMO

In two Icelandic Sea spring blooms (May 2018 and 2019) in the North Atlantic Ocean (62.9-68.0°N, 9.0-28.0°W), chlorophyll-a and dimethylsulfoniopropionate (DMSP) concentrations and DMSP lyase activity (the DMSP-to-dimethyl sulfide (DMS) conversion efficiency) were measured at 67 stations, and the hourly atmospheric DMS mixing ratios were concurrently measured only in May 2019 at Storhofdi on Heimaey Island, located south of Iceland (63.4°N, 20.3°W). The ocean parameters for biology (i.e., chlorophyll-a, DMSP, and DMSP lyase activity) were broadly associated in distribution; however, the statistical significance of the association differed among four ocean domains and also between 2018 and 2019. Specifically, the widespread dominance of Phaeocystis, coccolithophores, and dinoflagellates (all rich in DMSP and high in DMSP lyase activity) across the study area is a compelling indication that variations in DMSP-rich phytoplankton were likely a main cause of the variations in statistical significance. For all the ocean domains defined here, we found that the DMS production capacity (calculated using the exposures of air masses to ocean biology prior to their arrivals at Heimaey and the atmospheric DMS mixing ratios of those air masses at Heimaey) was surprisingly consistent with in situ ocean S data (i.e., DMSP and DMSP lyase activity). Our study shows that the proposed computational approach enabled the detection of changes in DMS production and emission in association with changes in ocean primary producers.


Assuntos
Fitoplâncton , Compostos de Enxofre , Oceano Atlântico , Clorofila , Clorofila A , Islândia , Água do Mar , Sulfetos/análise
11.
Sci Adv ; 9(50): eadk0842, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100582

RESUMO

Total annual net primary productions in marine and terrestrial ecosystems are similar. However, a large portion of the newly produced marine phytoplankton biomass is converted to carbon dioxide because of predation. Which food web structure retains high carbon biomass in the plankton community in the global ocean? In 6954 individual samples or locations containing phytoplankton, unicellular protozooplankton, and multicellular metazooplankton in the global ocean, phytoplankton-dominated bottom-heavy pyramids held higher carbon biomass than protozooplankton-dominated middle-heavy diamonds or metazooplankton-dominated top-heavy inverted pyramids. Bottom-heavy pyramids predominated, but the high predation impact by protozooplankton on phytoplankton or the vertical migration of metazooplankton temporarily changed bottom-heavy pyramids to middle-heavy diamonds or top-heavy inverted pyramids but returned to bottom-heavy pyramids shortly. This finding has profound implications for carbon retention by plankton communities in the global ocean.


Assuntos
Cadeia Alimentar , Plâncton , Ecossistema , Biomassa , Fitoplâncton , Diamante
12.
Environ Microbiol ; 14(3): 605-16, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21958033

RESUMO

We investigated the retention of dimethylsulfoniopropionate (DMSP) in phototrophic dinoflagellates arising from mixotrophy by estimating the cellular content of DMSP in Karlodinium veneficum (mixotrophic growth) fed for 7-10 days on either DMSP-rich Amphidinium carterae (phototrophic growth only) or DMSP-poor Teleaulax sp. (phototrophic growth only). In K. veneficum fed on DMSP-poor prey, the cellular content of DMSP remained almost unchanged regardless of the rate of feeding, whereas the cellular content of DMSP in cells of K. veneficum fed on DMSP-rich prey increased by as much as 21 times the cellular concentration derived exclusively from phototrophic growth. In both cases, significant fractions (10-32% in the former case and 55-65% in the latter) of the total DMSP ingested by K. veneficum were transformed into dimethylsulfide and other biochemical compounds. The results may indicate that the DMSP content of prey species affects temporal variations in the cellular DMSP content of mixotrophic dinoflagellates, and that mixotrophic dinoflagellates produce DMS through grazing on DMSP-rich preys. Additional studies should be performed to examine the universality of our finding in other mixotrophic dinoflagellates feeding on diverse prey species.


Assuntos
Dinoflagellida/metabolismo , Compostos de Sulfônio/metabolismo , Poluentes Químicos da Água/metabolismo , Criptófitas/crescimento & desenvolvimento , Criptófitas/metabolismo , Dinoflagellida/crescimento & desenvolvimento , Ingestão de Alimentos , Fenômenos Ecológicos e Ambientais , Cadeia Alimentar , Processos Fototróficos , Água do Mar/química , Compostos de Sulfônio/análise , Enxofre/metabolismo , Poluentes Químicos da Água/análise
13.
Sci Total Environ ; 827: 154042, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217039

RESUMO

Coastal oceans, known as the major nitrous oxide (N2O) source to the atmosphere, are increasingly subject to eutrophication and concurrent near-bottom hypoxia. The natural nitrogen cycle is likely to be altered markedly in hypoxic coastal oceans. However, the processes responsible for N2O production and emission remain elusive because of lacking field rate measurements simultaneously conducted in the water column and sediment. Here, we quantified N2O production rates using a 15N-labeled technique in the water-column and surface sediments off the Changjiang (Yangtze) River estuary, the largest hypoxic zone in the Pacific margins. Our results showed that the estuarine surface sediments were the major source for N2O production, accounting for approximately 90% of the total water-column accumulation and consequent efflux of N2O in the hypoxic zone, whereas the water-column nitrification and denitrification combined only contributed <10%. More importantly, the coupling of nitrification and denitrification at the presence of abundant supply and remineralization of labile organic matter was the main driver of the N2O release from the sediment-water interface in this region. This study highlights the dominant role of benthic processes occurring at the sediment-water interface controlling the coastal N2O budget, as the anthropogenic eutrophication and hypoxia are expanding in coastal oceans.


Assuntos
Óxido Nitroso , Rios , Desnitrificação , Estuários , Humanos , Hipóxia , Nitrificação , Nitrogênio/análise , Óxido Nitroso/análise , Água
14.
Sci Total Environ ; 803: 150002, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482143

RESUMO

Dimethyl sulfide (DMS) produced by marine algae represents the largest natural emission of sulfur to the atmosphere. The oxidation of DMS is a key process affecting new particle formation that contributes to the radiative forcing of the Earth. In this study, atmospheric DMS and its major oxidation products (methanesulfonic acid, MSA; non-sea-salt sulfate, nss-SO42-) and particle size distributions were measured at King Sejong station located in the Antarctic Peninsula during the austral spring-summer period in 2018-2020. The observatory was surrounded by open ocean and first-year and multi-year sea ice. Importantly, oceanic emissions and atmospheric oxidation of DMS showed distinct differences depending on source regions. A high mixing ratio of atmospheric DMS was observed when air masses were influenced by the open ocean and first-year sea ice due to the abundance of DMS producers such as pelagic phaeocystis and ice algae. However, the concentrations of MSA and nss-SO42- were distinctively increased for air masses originating from first-year sea ice as compared to those originating from the open ocean and multi-year sea ice, suggesting additional influences from the source regions of atmospheric oxidants. Heterogeneous chemical processes that actively occur over first-year sea ice tend to accelerate the release of bromine monoxide (BrO), which is the most efficient DMS oxidant in Antarctica. Model-estimates for surface BrO confirmed that high BrO mixing ratios were closely associated with first-year sea ice, thus enhancing DMS oxidation. Consequently, the concentration of newly formed particles originated from first-year sea ice, which was a strong source area for both DMS and BrO was greater than from open ocean (high DMS but low BrO). These results indicate that first-year sea ice plays an important yet overlooked role in DMS-induced new particle formation in polar environments, where warming-induced sea ice changes are pronounced.


Assuntos
Camada de Gelo , Água do Mar , Regiões Antárticas , Sulfetos/análise
15.
J Eukaryot Microbiol ; 58(6): 511-24, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21895842

RESUMO

We explored the feeding ecology of the newly described, nematocyst-bearing heterotrophic dinoflagellate Gyrodiniellum shiwhaense (GenBank accession number=FR720082). Using several different types of microscopes and high-resolution video-microscopy, we investigated feeding behavior and types of prey species that G. shiwhaense feeds upon. Additionally, we measured its growth and ingestion rates on its optimal algal prey, the cryptophyte Teleaulax sp. and the dinoflagellate Amphidinium carterae, as a function of prey concentration. These rates were measured for other edible prey at single prey concentrations at which the growth and ingestion rates of G. shiwhaense were saturated. After anchoring the prey with a tow filament, G. shiwhaense fed using a peduncle, ingesting small algal species with equivalent spherical diameters (ESDs) of <13 µm. However, it did not feed on larger algal species that had ESDs≥13 µm or the small diatom Skeletonema costatum. The specific growth rates for G. shiwhaense feeding upon Teleaulax sp. and A. carterae increased rapidly with increasing mean prey concentration before saturating at concentrations of ca. 180-430 ng C/ml. The maximum specific growth rate of G. shiwhaense on Teleaulax sp. and A. carterae were 1.05 and 0.82/d, respectively. However, Heterosigma akashiwo did not support positive growth of G. shiwhaense. The maximum ingestion rates of G. shiwhaense on Teleaulax sp. and A. carterae were 0.35 and 0.54 ng C/grazer/d, respectively. The calculated grazing coefficients attributable to G. shiwhaense on co-occurring cryptophytes and Amphidinium spp. were 0.01-1.87/d and 0.08-2.60/d, respectively. Our results suggest that G. shiwhaense can have a considerable grazing impact on algal populations.


Assuntos
Dinoflagellida/fisiologia , Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/metabolismo , Comportamento Alimentar , Microscopia/métodos
16.
J Eukaryot Microbiol ; 58(2): 152-70, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21332876

RESUMO

Woloszynskia species are dinoflagellates in the order Suessiales inhabiting marine or freshwater environments; their ecophysiology has not been well investigated, in particular, their trophic modes have yet to be elucidated. Previous studies have reported that all Woloszynskia species are photosynthetic, although their mixotrophic abilities have not been explored. We isolated a dinoflagellate from coastal waters in western Korea and established clonal cultures of this dinoflagellate. On the basis of morphology and analyses of the small/large subunit rRNA gene (GenBank accession number=FR690459), we identified this dinoflagellate as Woloszynskia cincta. We further established that this dinoflagellate is a mixotrophic species. We found that W. cincta fed on algal prey using a peduncle. Among the diverse prey provided, W. cincta ingested those algal species that had equivalent spherical diameters (ESDs) ≤12.6 µm, exceptions being the diatom Skeletonema costatum and the dinoflagellate Prorocentrum minimum. However, W. cincta did not feed on larger algal species that had ESDs≥15 µm. The specific growth rates for W. cincta increased continuously with increasing mean prey concentration before saturating at a concentration of ca. 134 ng C/ml (1,340 cells/ml) when Heterosigma akashiwo was used as food. The maximum specific growth rate (i.e. mixotrophic growth) of W. cincta feeding on H. akashiwo was 0.499 d(-1) at 20 °C under illumination of 20 µE/m(2) /s on a 14:10 h light-dark cycle, whereas its growth rate (i.e. phototrophic growth) under the same light conditions without added prey was 0.040 d(-1). The maximum ingestion and clearance rates of W. cincta feeding on H. akashiwo were 0.49 ng C/grazer/d (4.9 cells/grazer/d) and 1.9 µl/grazer/h, respectively. The calculated grazing coefficients for W. cincta on co-occurring H. akashiwo were up to 1.1 d(-1). The results of the present study suggest that grazing by W. cincta can have a potentially considerable impact on prey algal populations.


Assuntos
Dinoflagellida/isolamento & purificação , Dinoflagellida/fisiologia , Água do Mar/parasitologia , Diatomáceas/classificação , Diatomáceas/isolamento & purificação , Dinoflagellida/classificação , Dinoflagellida/genética , Eucariotos/classificação , Eucariotos/isolamento & purificação , Dados de Sequência Molecular , Processos Fototróficos , Filogenia , República da Coreia
17.
Sci Adv ; 7(2)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523999

RESUMO

Microalgae fuel food webs and biogeochemical cycles of key elements in the ocean. What determines microalgal dominance in the ocean is a long-standing question. Red tide distribution data (spanning 1990 to 2019) show that mixotrophic dinoflagellates, capable of photosynthesis and predation together, were responsible for ~40% of the species forming red tides globally. Counterintuitively, the species with low or moderate growth rates but diverse prey including diatoms caused red tides globally. The ability of these dinoflagellates to trade off growth for prey diversity is another genetic factor critical to formation of red tides across diverse ocean conditions. This finding has profound implications for explaining the global dominance of particular microalgae, their key eco-evolutionary strategy, and prediction of harmful red tide outbreaks.

18.
Sci Total Environ ; 793: 148401, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34166903

RESUMO

We evaluated the potential impacts of atmospheric deposition on marine productivity and inorganic carbon chemistry in the northwestern Pacific Ocean (8-39°N, 125-157°E). The nutrient concentration in atmospheric total suspended particles decreased exponentially with increasing distance from the closest land-mass (Asia), clearly revealing anthropogenic and terrestrial contributions. The predicted mean depositional fluxes of inorganic nitrogen were approximately 34 and 15 µmol m-2 d-1 to the west and east of 140°E, respectively, which were at least two orders of magnitude greater than the inorganic phosphorus flux. On average, atmospheric particulate deposition would support 3-4% of the net primary production along the surveyed tracks, which is equivalent to ~2% of the dissolved carbon increment caused by the penetration of anthropogenic CO2. Our observations generally fell within the ranges observed over the past 18 years, despite an increasing trend of atmospheric pollution in the source regions during the same period, which implies high temporal and spatial variabilities of atmospheric nutrient concentration in the study area. Continued atmospheric anthropogenic nitrogen deposition may alter the relative abundances of nitrogen and phosphorus.


Assuntos
Nitrogênio , Fósforo , Carbono , Nitrogênio/análise , Nutrientes , Oceano Pacífico , Fósforo/análise
19.
Environ Sci Technol ; 44(21): 8140-3, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20883015

RESUMO

Oceanic dimethylsulfide (DMS) released to the atmosphere affects the Earth's radiation budget through the production and growth of cloud condensation nuclei over the oceans. However, it is not yet known whether this negative climate feedback mechanism will intensify or weaken in oceans characterized by high CO(2) levels and warm temperatures. To investigate the effects of two emerging environmental threats (ocean acidification and warming) on marine DMS production, we performed a perturbation experiment in a coastal environment. Two sets of CO(2) and temperature conditions (a pCO(2) of ∼900 ppmv at ambient temperature conditions, and a pCO(2) of ∼900 ppmv at a temperature ∼3 °C warmer than ambient) significantly stimulated the grazing rate and the growth rate of heterotrophic dinoflagellates (ubiquitous marine microzooplankton). The increased grazing rate resulted in considerable DMS production. Our results indicate that increased grazing-induced DMS production may occur in high CO(2) oceans in the future.


Assuntos
Poluentes Atmosféricos/metabolismo , Dióxido de Carbono/metabolismo , Água do Mar/química , Sulfetos/metabolismo , Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/metabolismo , Efeito Estufa , Concentração de Íons de Hidrogênio , Oceanos e Mares , Sulfetos/análise
20.
Sci Total Environ ; 733: 139377, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32447083

RESUMO

Hydrogen peroxide (H2O2) affects the activity of microbes, including archaea, and thereby influences the biogeochemical cycles of critical elements in marine and terrestrial environments. In this study, we measured the levels of H2O2 associated with three classes of extreme wet precipitation events: winter storms, tropical storms, and typhoons. In conjunction with precipitation data, the measured H2O2 concentration in a seawater reservoir receiving precipitation was used to estimate rainwater H2O2 concentration and flux. The rainwater H2O2 concentration during winter storms and coexisting storms (storms having combined maritime and continental origins) was a factor of 2-3 higher than the levels observed during the typhoons. Fluxes of H2O2 in rainwater of 6 µM min-1 or greater resulted in H2O2 concentrations ~1 µM in the seawater reservoir. During all precipitation events, the H2O2 concentration in the seawater reservoir was dominated by wet precipitation and reached levels greater than would be produced in situ by photochemical processes. During winter and coexisting storms, the rainwater H2O2 concentrations were likely to have been enhanced by atmospheric photochemical reactions probably involving pollutants. An increase in the H2O2 concentration in surface aqueous environments during extreme precipitation events will directly affect the microbial cycling of nitrogen and organic carbon.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa