Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402585, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860560

RESUMO

Sodium-ion batteries (SIBs) have emerged as a compelling alternative to lithium-ion batteries (LIBs), exhibiting comparable electrochemical performance while capitalizing on the abundant availability of sodium resources. In SIBs, P2/O3 biphasic cathodes, despite their high energy, require furthur improvements in stability to meet current energy demands. This study introduces a systematic methodology that leverages the meta-heuristically assisted NSGA-II algorithm to optimize multi-element doping in electrode materials, aiming to transcend conventional trial-and-error methods and enhance cathode capacity by the synergistic integration of P2 and O3 phases. A comprehensive phase analysis of the meta-heuristically designed cathode material Na0.76Ni0.20Mn0.42Fe0.30Mg0.04Ti0.015Zr0.025O2 (D-NFMO) is presented, showcasing its remarkable initial reversible capacity of 175.5 mAh g-1 and exceptional long-term cyclic stability in sodium cells. The investigation of structural composition and the stabilizing mechanisms is performed through the integration of multiple characterization techniques. Remarkably, the irreversible phase transition of P2→OP4 in D-NFMO is observed to be dramatically suppressed, leading to a substantial enhancement in cycling stability. The comparison with the pristine cathode (P-NFMO) offers profound insights into the long-term electrochemical stability of D-NFMO, highlighting its potential as a high-voltage cathode material utilizing abundant earth elements in SIBs. This study opens up new possibilities for future advancements in sodium-ion battery technology.

2.
Inorg Chem ; 62(10): 4124-4135, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36856672

RESUMO

A NASICON-structured earth-abundant mixed transition metal (TM) containing Na-TM-phosphate, viz., Na2ZrFe(PO4)3, has been prepared via a sol-gel route using a low-cost Fe3+-based precursor. The as-prepared material crystallizes in the desired rhombohedral NASICON structure (space group: R3̅c) at room temperature. Synchrotron X-ray diffraction (XRD), transmission electron microscopy, X-ray absorption spectroscopy, etc., have been performed to determine the crystal structure, associated details, composition, and electronic structures. In light of the structural features, as one of the possible functionalities of Na2FeZr(PO4)3, Na-intercalation/deintercalation has been examined, which indicates the occurrence of reversible electrochemical Na-insertion/extraction via Fe2+/Fe3+ redox at an average potential of ∼2.5 V. The electrochemical data and direct evidences from operando synchrotron XRD indicate that the rhombohedral structure is preserved during Na-insertion/extraction, albeit within a certain range of Na-content (i.e., ∼2-3 p.f.u.), beyond which rhombohedral → monoclinic transformation takes place. Within this range, Na-insertion/extraction takes place via solid-solution pathway, resulting in outstanding cyclic stability, higher Na-diffusivity, and good rate-capability. To the best of the authors' knowledge, this represents the first in-depth structural, compositional, and electrochemical studies with Na2ZrFe(PO4)3, along with the interplay between those, which provide insights into the design of similar low-cost materials for various applications, including sustainable electrochemical energy storage systems.

3.
Inorg Chem ; 62(26): 10279-10290, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37342900

RESUMO

The catalytic redox activity of Cu(II) bound to the amino-terminal copper and nickel (ATCUN) binding motif (Xxx-Zzz-His, XZH) is stimulating the development of catalytic metallodrugs based on reactive oxygen species (ROS)-mediated biomolecule oxidation. However, low Cu(I) availability resulting from the strong Cu(II) binding affinity of the ATCUN motif is regarded as a limitation to efficient ROS generation. To address this, we replaced the imidazole moiety (pKa 7.0) of Gly-Gly-His-NH2 (GGHa, a canonical ATCUN peptide) with thiazole (pKa 2.7) and oxazole (pKa 0.8), yielding GGThia and GGOxa, respectively. A newly synthesized amino acid, Fmoc-3-(4-oxazolyl)-l-alanine, served as a histidine surrogate featuring an azole ring with the lowest pKa among known analogues. Despite similar square-planar Cu(II)-N4 geometries being observed for the three Cu(II)-ATCUN complexes by electron paramagnetic resonance spectroscopy and X-ray crystallography, the azole modification enabled the Cu(II)-ATCUN complexes to exhibit significant rate enhancement for ROS-mediated DNA cleavage. Further analyses based on Cu(I)/Cu(II) binding affinities, electrochemical measurements, density functional theory calculations, and X-ray absorption spectroscopy indicated that the azole modification enhanced the accessibility of the Cu(I) oxidation state during ROS generation. Our oxazole/thiazole-containing ATCUN motifs provide a new design strategy for peptide ligands with modulated N donor ability, with potential applications in the development of ROS-mediated metallodrugs.


Assuntos
Cobre , Histidina , Espécies Reativas de Oxigênio/metabolismo , Cobre/química , Oxazóis/farmacologia , Peptídeos
4.
Small ; 18(27): e2202798, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35661400

RESUMO

The rapid transport of alkali ions in electrodes is a long-time dream for fast-charging batteries. Though electrode nanostructuring has increased the rate-capability, its practical use is limited because of the low tap density and severe irreversible reactions. Therefore, development of a strategy to design fast-charging micron-sized electrodes without nanostructuring is of significant importance. Herein, a simple and versatile strategy to accelerate the alkali ion diffusion behavior in micron-sized electrode is reported. It is demonstrated that the diffusion rate of K+ ions is significantly improved at the hetero-interface between orthorhombic Nb2 O5 (001) and monoclinic MoO2 (110) planes. Lattice distortion at the hetero-interface generates an inner space large enough for the facile transport of K+ ions, and electron localization near oxygen-vacant sites further enhances the ion diffusion behavior. As a result, the interfacial-engineered micron-sized anode material achieves an outstanding rate capability in potassium-ion batteries (KIBs), even higher than nanostructured orthorhombic Nb2 O5  which is famous for fast-charging electrodes. This is the first study to develop an intercalation pseudocapacitive micron-sized anode without nanostructuring for fast-charging and high volumetric energy density KIBs. More interestingly, this strategy is not limited to K+ ion, but also applicable to Li+ ion, implying the versatility of interfacial engineering for alkali ion batteries.

5.
Nano Lett ; 21(19): 7953-7959, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34585926

RESUMO

Oxygen vacancies and their correlation with the electronic structure are crucial to understanding the functionality of TiO2 nanocrystals in material design applications. Here, we report spectroscopic investigations of the electronic structure of anatase TiO2 nanocrystals by employing hard and soft X-ray absorption spectroscopy measurements along with the corresponding model calculations. We show that the oxygen vacancies significantly transform the Ti local symmetry by modulating the covalency of titanium-oxygen bonds. Our results suggest that the altered Ti local symmetry is similar to the C3v, which implies that the Ti exists in two local symmetries (D2d and C3v) at the surface. The findings also indicate that the Ti distortion is a short-range order effect and presumably confined up to the second nearest neighbors. Such distortions modulate the electronic structure and provide a promising approach to structural design of the TiO2 nanocrystals.

6.
Nano Lett ; 21(12): 5247-5253, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34100618

RESUMO

In heterogeneous catalysts, metal-oxide interactions occur spontaneously but often in an undesired way leading to the oxidation of metal nanoparticles. Manipulating such interactions to produce highly active surface of metal nanoparticles can warrant the optimal catalytic activity but has not been established to date. Here we report that a prior reduced TiO2 support can reverse the interaction with Pt nanoparticles and augment the metallic state of Pt, exhibiting a 3-fold increase in hydrogen production rate compared to that of conventional Pt/TiO2. Spatially resolved electron energy loss spectroscopy of the Ti valence state and the electron density distribution within Pt nanoparticles provide direct evidence supporting that the Pt/TiO2/H2O triple junctions are the most active catalytic sites for water reduction. Our reverse metal-oxide interaction scheme provides a breakthrough in the stagnated hydrogen production efficiency and can be applied to other heterogeneous catalyst systems composed of metal nanoparticles with reducible oxide supports.


Assuntos
Nanopartículas Metálicas , Água , Catálise , Óxidos , Titânio
7.
Small ; 17(42): e2103705, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34558171

RESUMO

To identify high-efficiency metal-nitrogen-doped (M-N-C) electrocatalysts for the electrochemical CO2 -to-CO reduction reaction (CO2 RR), a method that uses density functional theory calculation is presented to evaluate their selectivity, activity, and structural stability. Twenty-three M-N4 -C catalysts are evaluated, and three of them (M = Fe, Co, or Ni) are identified as promising candidates. They are synthesized and tested as proof-of-concept catalysts for CO2 -to-CO conversion. Different key descriptors, including the maximum reaction energy, differences of the *H and *CO binding energy (ΔG*H -ΔG*CO ), and *CO desorption energy (ΔG*CO→CO( g ) ), are used to clarify the reaction mechanism. These computational descriptors effectively predict the experimental observations in the entire range of electrochemical potential. The findings provide a guideline for rational design of heterogeneous CO2 RR electrocatalysts.

8.
Nat Mater ; 19(4): 436-442, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31932671

RESUMO

Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, H2O2 can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co-N4 moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes. Using this principle, we designed and synthesized a single-atom electrocatalyst that comprises an optimized Co-N4 moiety incorporated in nitrogen-doped graphene for H2O2 production and exhibits a kinetic current density of 2.8 mA cm-2 (at 0.65 V versus the reversible hydrogen electrode) and a mass activity of 155 A g-1 (at 0.65 V versus the reversible hydrogen electrode) with negligible activity loss over 110 hours.

9.
Angew Chem Int Ed Engl ; 60(37): 20528-20534, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34263519

RESUMO

Rational control of the coordination environment of atomically dispersed catalysts is pivotal to achieve desirable catalytic reactivity. We report the reversible control of coordination structure in atomically dispersed electrocatalysts via ligand exchange reactions to reversibly modulate their reactivity for oxygen reduction reaction (ORR). The CO-ligated atomically dispersed Rh catalyst exhibited ca. 30-fold higher ORR activity than the NHx -ligated catalyst, whereas the latter showed three times higher H2 O2 selectivity than the former. Post-treatments of the catalysts with CO or NH3 allowed the reversible exchange of CO and NHx ligands, which reversibly tuned oxidation state of metal centers and their ORR activity and selectivity. DFT calculations revealed that more reduced oxidation state of CO-ligated Rh site could further stabilize the *OOH intermediate, facilitating the two- and four-electron pathway ORR. The reversible ligand exchange reactions were generalized to Ir- and Pt-based catalysts.

10.
Nat Mater ; 18(6): 620-626, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31011217

RESUMO

The reversible and cooperative activation process, which includes electron transfer from surrounding redox mediators, the reversible valence change of cofactors and macroscopic functional/structural change, is one of the most important characteristics of biological enzymes, and has frequently been used in the design of homogeneous catalysts. However, there are virtually no reports on industrially important heterogeneous catalysts with these enzyme-like characteristics. Here, we report on the design and synthesis of highly active TiO2 photocatalysts incorporating site-specific single copper atoms (Cu/TiO2) that exhibit a reversible and cooperative photoactivation process. Our atomic-level design and synthetic strategy provide a platform that facilitates valence control of co-catalyst copper atoms, reversible modulation of the macroscopic optoelectronic properties of TiO2 and enhancement of photocatalytic hydrogen generation activity, extending the boundaries of conventional heterogeneous catalysts.

11.
Nano Lett ; 18(4): 2450-2458, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29578723

RESUMO

Bimetallic PtNi nanoparticles have been considered as a promising electrocatalyst for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) owing to their high catalytic activity. However, under typical fuel cell operating conditions, Ni atoms easily dissolve into the electrolyte, resulting in degradation of the catalyst and the membrane-electrode assembly (MEA). Here, we report gallium-doped PtNi octahedral nanoparticles on a carbon support (Ga-PtNi/C). The Ga-PtNi/C shows high ORR activity, marking an 11.7-fold improvement in the mass activity (1.24 A mgPt-1) and a 17.3-fold improvement in the specific activity (2.53 mA cm-2) compared to the commercial Pt/C (0.106 A mgPt-1 and 0.146 mA cm-2). Density functional theory calculations demonstrate that addition of Ga to octahedral PtNi can cause an increase in the oxygen intermediate binding energy, leading to the enhanced catalytic activity toward ORR. In a voltage-cycling test, the Ga-PtNi/C exhibits superior stability to PtNi/C and the commercial Pt/C, maintaining the initial Ni concentration and octahedral shape of the nanoparticles. Single cell using the Ga-PtNi/C exhibits higher initial performance and durability than those using the PtNi/C and the commercial Pt/C. The majority of the Ga-PtNi nanoparticles well maintain the octahedral shape without agglomeration after the single cell durability test (30,000 cycles). This work demonstrates that the octahedral Ga-PtNi/C can be utilized as a highly active and durable ORR catalyst in practical fuel cell applications.

12.
Nano Lett ; 18(7): 4257-4262, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29902008

RESUMO

Despite a longstanding controversy surrounding TiO2 materials, TiO2 polymorphs with heterojunctions composed of anatase and rutile outperform individual polymorphs because of the type-II energetic band alignment at the heterojunction interface. Improvement in photocatalysis has also been achieved via black TiO2 with a thin disorder layer surrounding ordered TiO2. However, localization of this disorder layer in a conventional single TiO2 nanoparticle with the heterojunction composed of anatase and rutile has remained a big challenge. Here, we report the selective positioning of a disorder layer of controlled thicknesses between the anatase and rutile phases by a conceptually different synthetic route to access highly efficient novel metal-free photocatalysis for H2 production. The presence of a localized disorder layer within a single TiO2 nanoparticle was confirmed for the first time by high-resolution transmission electron microscopy with electron energy-loss spectroscopy and inline electron holography. Multiple heterojunctions in single TiO2 nanoparticles composed of crystalline anatase/disordered rutile/ordered rutile layers give the nanoparticles superior electron/hole separation efficiency and novel metal-free surface reactivity, which concomitantly yields an H2 production rate that is ∼11-times higher than that of Pt-decorated conventional anatase and rutile single heterojunction TiO2 systems.

13.
J Am Chem Soc ; 140(48): 16676-16684, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30418777

RESUMO

Various kinds of nanostructured materials have been extensively investigated as lithium ion battery electrode materials derived from their numerous advantageous features including enhanced energy and power density and cyclability. However, little is known about the microscopic origin of how nanostructures can enhance lithium storage performance. Herein, we identify the microscopic origin of enhanced lithium storage in anatase TiO2 nanostructure and report a reversible and stable route to achieve enhanced lithium storage capacity in anatase TiO2. We designed hollow anatase TiO2 nanostructures composed of interconnected ∼5 nm sized nanocrystals, which can individually reach the theoretical lithium storage limit and maintain a stable capacity during prolonged cycling (i.e., 330 mAh g-1 for the initial cycle and 228 mAh g-1 for the 100th cycle, at 0.1 A g-1). In situ characterization by X-ray diffraction and X-ray absorption spectroscopy shows that enhanced lithium storage into the anatase TiO2 nanocrystal results from the insertion reaction, which expands the crystal lattice during the sequential phase transition (anatase TiO2 → Li0.55TiO2 → LiTiO2). In addition to the pseudocapacitive charge storage of nanostructures, our approach extends the utilization of nanostructured TiO2 for significantly stabilizing excess lithium storage in crystal structures for long-term cycling, which can be readily applied to other lithium storage materials.

14.
J Am Chem Soc ; 139(19): 6669-6674, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28437070

RESUMO

A highly active and stable non-Pt electrocatalyst for hydrogen production has been pursued for a long time as an inexpensive alternative to Pt-based catalysts. Herein, we report a simple and effective approach to prepare high-performance iron phosphide (FeP) nanoparticle electrocatalysts using iron oxide nanoparticles as a precursor. A single-step heating procedure of polydopamine-coated iron oxide nanoparticles leads to both carbonization of polydopamine coating to the carbon shell and phosphidation of iron oxide to FeP, simultaneously. Carbon-shell-coated FeP nanoparticles show a low overpotential of 71 mV at 10 mA cm-2, which is comparable to that of a commercial Pt catalyst, and remarkable long-term durability under acidic conditions for up to 10 000 cycles with negligible activity loss. The effect of carbon shell protection was investigated both theoretically and experimentally. A density functional theory reveals that deterioration of catalytic activity of FeP is caused by surface oxidation. Extended X-ray absorption fine structure analysis combined with electrochemical test shows that carbon shell coating prevents FeP nanoparticles from oxidation, making them highly stable under hydrogen evolution reaction operation conditions. Furthermore, we demonstrate that our synthetic method is suitable for mass production, which is highly desirable for large-scale hydrogen production.

15.
J Am Chem Soc ; 137(37): 11954-61, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26329036

RESUMO

We report a simple synthetic method of carbon-based hybrid cellular nanosheets that exhibit outstanding electrochemical performance for many key aspects of lithium-ion battery electrodes. The nanosheets consist of close-packed cubic cavity cells partitioned by carbon walls, resembling plant leaf tissue. We loaded carbon cellular nanosheets with SnO2 nanoparticles by vapor deposition method and tested the performance of the resulting SnO2-carbon nanosheets as anode materials. The specific capacity is 914 mAh g(-1) on average with a retention of 97.0% during 300 cycles, and the reversible capacity is decreased by only 20% as the current density is increased from 200 to 3000 mA g(-1). In order to explain the excellent electrochemical performance, the hybrid cellular nanosheets were analyzed with cyclic voltammetry, in situ X-ray absorption spectroscopy, and transmission electron microscopy. We found that the high packing density, large interior surface area, and rigid carbon wall network are responsible for the high specific capacity, lithiation/delithiation reversibility, and cycling stability. Furthermore, the nanosheet structure leads to the high rate capability due to fast Li-ion diffusion in the thickness direction.

16.
J Am Chem Soc ; 137(49): 15478-85, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26670103

RESUMO

Demand on the practical synthetic approach to the high performance electrocatalyst is rapidly increasing for fuel cell commercialization. Here we present a synthesis of highly durable and active intermetallic ordered face-centered tetragonal (fct)-PtFe nanoparticles (NPs) coated with a "dual purpose" N-doped carbon shell. Ordered fct-PtFe NPs with the size of only a few nanometers are obtained by thermal annealing of polydopamine-coated PtFe NPs, and the N-doped carbon shell that is in situ formed from dopamine coating could effectively prevent the coalescence of NPs. This carbon shell also protects the NPs from detachment and agglomeration as well as dissolution throughout the harsh fuel cell operating conditions. By controlling the thickness of the shell below 1 nm, we achieved excellent protection of the NPs as well as high catalytic activity, as the thin carbon shell is highly permeable for the reactant molecules. Our ordered fct-PtFe/C nanocatalyst coated with an N-doped carbon shell shows 11.4 times-higher mass activity and 10.5 times-higher specific activity than commercial Pt/C catalyst. Moreover, we accomplished the long-term stability in membrane electrode assembly (MEA) for 100 h without significant activity loss. From in situ XANES, EDS, and first-principles calculations, we confirmed that an ordered fct-PtFe structure is critical for the long-term stability of our nanocatalyst. This strategy utilizing an N-doped carbon shell for obtaining a small ordered-fct PtFe nanocatalyst as well as protecting the catalyst during fuel cell cycling is expected to open a new simple and effective route for the commercialization of fuel cells.

18.
Adv Mater ; 36(15): e2310769, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38239004

RESUMO

It is challenging to control the electronic structure of 2D transition metal dichalcogenides (TMD) for extended applications in renewable energy devices. Here, ReSe2-VSe2 (Re1- xVxSe2) alloy nanosheets over the whole composition range via a colloidal reaction is synthesized. Increasing x makes the nanosheets more metallic and induces a 1T″-to-1T phase transition at x = 0.5-0.6. Compared to the MoSe2-VSe2 and WSe2-VSe2 alloy nanosheets, ReSe2 and VSe2 are mixed more homogeneously at the atomic scale. The alloy nanosheets at x = 0.1-0.7 exhibit an enhanced electrocatalytic activity toward acidic hydrogen evolution reaction (HER). In situ X-ray absorption fine structure measurements reveal that alloying caused the Re and V atoms to be synergically more active in the HER. Gibbs free energy (ΔGH*) and density of state calculations confirm that alloying and Se vacancies effectively activate the metal sites toward HER. The composition dependence of HER performance is explained by homogenous atomic mixing with the increased Se vacancies. The study provides a strategy for designing new TMD alloy nanosheets with enhanced catalytic activity.

19.
Dalton Trans ; 53(19): 8328-8334, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38666327

RESUMO

In this study, we performed the CO2 reduction reaction (CO2RR) using a structural composite catalyst of cuprous oxide (Cu2O) and silver (Ag) that was simultaneously electrodeposited. While the underneath Ag electrodeposits maintained their spiky backbone structures even after the CO2RR, the Cu2O deposits were reduced to Cu(111) and relocated on the backbone template. The structural changes in Cu2O to Cu increase the active area of the Cu-Ag interface, resulting in a remarkable production rate of 125.01 µmol h-1 of liquid C2+ chemicals via the stabilization of the C-C coupling of the key intermediate species of acetaldehyde. This study provides new insights into designing a bimetallic catalyst for producing sustainable C2+ products from CO2 without any selectivity towards the production of methane.

20.
Adv Mater ; 36(8): e2307867, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009401

RESUMO

The phase control of transition metal dichalcogenides (TMDs) is an intriguing approach for tuning the electronic structure toward extensive applications. In this study, WSe2 nanosheets synthesized via a colloidal reaction exhibit a phase conversion from semiconducting 2H to metallic 2M under Se-rich growth conditions (i.e., increasing the concentration of Se precursor or lowering the growth temperature). High-resolution scanning transmission electron microscopy images are used to identify the stacking sequence of the 2M phase, which is distinctive from that of the 1T' phase. First-principles calculations employing various Se-rich models (intercalation and substitution) indicated that Se enrichment induces conversion to the 2M phase. The 2M phase WSe2 nanosheets with the Se excess exhibited enhanced electrocatalytic performance in the hydrogen evolution reaction (HER). In situ X-ray absorption fine structure studies suggested that the excess Se atoms in the 2M phase WSe2 enhanced the HER catalytic activity, which is supported by the Gibbs free energy (ΔGH* ) of H adsorption and the Fermi abundance function. These results provide an appealing strategy for phase control of TMD catalysts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa