Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 20(11): 1645-1660, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872244

RESUMO

Quantitative phase imaging, integrated with artificial intelligence, allows for the rapid and label-free investigation of the physiology and pathology of biological systems. This review presents the principles of various two-dimensional and three-dimensional label-free phase imaging techniques that exploit refractive index as an intrinsic optical imaging contrast. In particular, we discuss artificial intelligence-based analysis methodologies for biomedical studies including image enhancement, segmentation of cellular or subcellular structures, classification of types of biological samples and image translation to furnish subcellular and histochemical information from label-free phase images. We also discuss the advantages and challenges of artificial intelligence-enabled quantitative phase imaging analyses, summarize recent notable applications in the life sciences, and cover the potential of this field for basic and industrial research in the life sciences.


Assuntos
Inteligência Artificial , Disciplinas das Ciências Biológicas , Aumento da Imagem , Imageamento Tridimensional/métodos
2.
Opt Express ; 31(9): 13806-13816, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157259

RESUMO

The refractive index (RI) of cells and tissues is crucial in pathophysiology as a noninvasive and quantitative imaging contrast. Although its measurements have been demonstrated using three-dimensional quantitative phase imaging methods, these methods often require bulky interferometric setups or multiple measurements, which limits the measurement sensitivity and speed. Here, we present a single-shot RI imaging method that visualizes the RI of the in-focus region of a sample. By exploiting spectral multiplexing and optical transfer function engineering, three color-coded intensity images of a sample with three optimized illuminations were simultaneously obtained in a single-shot measurement. The measured intensity images were then deconvoluted to obtain the RI image of the in-focus slice of the sample. As a proof of concept, a setup was built using Fresnel lenses and a liquid-crystal display. For validation purposes, we measured microspheres of known RI and cross-validated the results with simulated results. Various static and highly dynamic biological cells were imaged to demonstrate that the proposed method can conduct single-shot RI slice imaging of biological samples with subcellular resolution.

3.
Opt Express ; 30(8): 13802-13809, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472985

RESUMO

Deconvolution phase microscopy enables high-contrast visualization of transparent samples through reconstructions of their transmitted phases or refractive indexes. Herein, we propose a method to extend 2D deconvolution phase microscopy to thick 3D samples. The refractive index distribution of a sample can be obtained at a specific axial plane by measuring only four intensity images obtained under optimized illumination patterns. Also, the optical phase delay of a sample can be measured using different illumination patterns.

4.
Commun Biol ; 7(1): 115, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245624

RESUMO

A critical requirement for studying cell mechanics is three-dimensional assessment of cellular shapes and forces with high spatiotemporal resolution. Traction force microscopy with fluorescence imaging enables the measurement of cellular forces, but it is limited by photobleaching and a slow acquisition speed. Here, we present refractive-index traction force microscopy (RI-TFM), which simultaneously quantifies the volumetric morphology and traction force of cells using a high-speed illumination scheme with 0.5-Hz temporal resolution. Without labelling, our method enables quantitative analyses of dry-mass distributions and shear (in-plane) and normal (out-of-plane) tractions of single cells on the extracellular matrix. When combined with a constrained total variation-based deconvolution algorithm, it provides 0.55-Pa shear and 1.59-Pa normal traction sensitivity for a 1-kPa hydrogel substrate. We demonstrate its utility by assessing the effects of compromised intracellular stress and capturing the rapid dynamics of cellular junction formation in the spatiotemporal changes in non-planar traction components.


Assuntos
Fenômenos Mecânicos , Tração , Microscopia de Força Atômica/métodos , Algoritmos
5.
Biophys Rev (Melville) ; 4(1): 011302, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505814

RESUMO

A groundbreaking work in 1970 by Arthur Ashkin paved the way for developing various optical trapping techniques. Optical tweezers have become an established method for the manipulation of biological objects, due to their noninvasiveness and precise controllability. Recent innovations are accelerating and now enable single-cell manipulation through holographic light structuring. In this review, we provide an overview of recent advances in optical tweezer techniques for studies at the individual cell level. Our review focuses on holographic optical tweezers that utilize active spatial light modulators to noninvasively manipulate live cells. The versatility of the technology has led to valuable integrations with microscopy, microfluidics, and biotechnological techniques for various single-cell studies. We aim to recapitulate the basic principles of holographic optical tweezers, highlight trends in their biophysical applications, and discuss challenges and future prospects.

6.
J Biophotonics ; 16(8): e202300067, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37170722

RESUMO

For patients with acute ischemic stroke, histological quantification of thrombus composition provides evidence for determining appropriate treatment. However, the traditional manual segmentation of stained thrombi is laborious and inconsistent. In this study, we propose a label-free method that combines optical diffraction tomography (ODT) and deep learning (DL) to automate the histological quantification process. The DL model classifies ODT image patches with 95% accuracy, and the collective prediction generates a whole-slide map of red blood cells and fibrin. The resulting whole-slide composition displays an average error of 1.1% and does not experience staining variability, facilitating faster analysis with reduced labor. The present approach will enable rapid and quantitative evaluation of blood clot composition, expediting the preclinical research and diagnosis of cardiovascular diseases.


Assuntos
Isquemia Encefálica , Aprendizado Profundo , AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Isquemia Encefálica/patologia , Trombose/diagnóstico por imagem , Trombose/patologia , Tomografia
7.
Biomed Opt Express ; 14(12): 6127-6137, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420329

RESUMO

The isolation of white blood cells (WBCs) from whole blood constitutes a pivotal process for immunological studies, diagnosis of hematologic disorders, and the facilitation of immunotherapy. Despite the ubiquity of density gradient centrifugation in WBC isolation, its influence on WBC functionality remains inadequately understood. This research employs holotomography to explore the effects of two distinct WBC separation techniques, namely conventional centrifugation and microfluidic separation, on the functionality of the isolated cells. We utilize three-dimensional refractive index distribution and time-lapse dynamics to analyze individual WBCs in-depth, focusing on their morphology, motility, and phagocytic capabilities. Our observations highlight that centrifugal processes negatively impact WBC motility and phagocytic capacity, whereas microfluidic separation yields a more favorable outcome in preserving WBC functionality. These findings emphasize the potential of microfluidic separation techniques as a viable alternative to traditional centrifugation for WBC isolation, potentially enabling more precise analyses in immunology research and improving the accuracy of hematologic disorder diagnoses.

8.
Biomed Opt Express ; 14(3): 1071-1081, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950245

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a common histopathological subtype of renal cancer and is notorious for its poor prognosis. Its accurate diagnosis by histopathology, which relies on manual microscopic inspection of stained slides, is challenging. Here, we present a correlative approach to utilize stained images and refractive index (RI) tomography and demonstrate quantitative assessments of the structural heterogeneities of ccRCC slides obtained from human patients. Machine-learning-assisted segmentation of nuclei and cytoplasm enabled the quantification at the subcellular level. Compared to benign regions, malignant regions exhibited a considerable increase in structural heterogeneities. The results demonstrate that RI tomography provides quantitative information in synergy with stained images on the structural heterogeneities in ccRCC.

9.
PLoS One ; 16(12): e0262106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972199

RESUMO

Phosphate-buffered saline (PBS) and Alsever's solution (AS) are frequently used as media in blood-related studies, while 0.9% normal saline (NS) is frequently used in transfusion medicine. Despite the frequent use, the effects of these solutions on the shape and volume of red blood cells (RBCs) have not been reported. We collected blood samples from five healthy adults and used three-dimensional refractive index tomography to investigate the changes in the morphology of RBCs caused by changes in osmolality and solutes at the single-cell level. After diluting 2 µL of RBCs 200-fold with each solution (PBS, AS, and 0.9% NS), 40 randomly selected RBCs were microscopically observed. RBC shape was measured considering sphericity, which is a dimensionless quantity ranging from 0 (flat) to 1 (spherical). RBCs in plasma or AS showed a biconcave shape with a small sphericity, whereas those in 0.9% NS or PBS showed a spherical shape with a large sphericity. Moreover, we confirmed that sodium chloride alone could not elicit the biconcave shape of RBCs, which could be maintained only in the presence of an osmotic pressure-maintaining substance, such as glucose or mannitol. Although 0.9% NS solution is one of the most commonly used fluids in hematology and transfusion medicine, RBCs in 0.9% NS or PBS are not biconcave. Therefore, as the debate on the use of NS continues, future clinical studies or applications should consider the effect of glucose or mannitol on the shape of RBCs.


Assuntos
Eritrócitos/citologia , Imageamento Tridimensional/métodos , Concentração Osmolar , Refratometria/métodos , Tomografia/métodos , Preservação de Sangue/métodos , Forma Celular , Deformação Eritrocítica/efeitos dos fármacos , Glucose/química , Voluntários Saudáveis , Hematologia , Humanos , Manitol/química , Cloreto de Sódio/química , Soluções , Solventes , Medicina Transfusional
10.
Nat Cell Biol ; 23(12): 1329-1337, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34876684

RESUMO

Simultaneous imaging of various facets of intact biological systems across multiple spatiotemporal scales is a long-standing goal in biology and medicine, for which progress is hindered by limits of conventional imaging modalities. Here we propose using the refractive index (RI), an intrinsic quantity governing light-matter interaction, as a means for such measurement. We show that major endogenous subcellular structures, which are conventionally accessed via exogenous fluorescence labelling, are encoded in three-dimensional (3D) RI tomograms. We decode this information in a data-driven manner, with a deep learning-based model that infers multiple 3D fluorescence tomograms from RI measurements of the corresponding subcellular targets, thereby achieving multiplexed microtomography. This approach, called RI2FL for refractive index to fluorescence, inherits the advantages of both high-specificity fluorescence imaging and label-free RI imaging. Importantly, full 3D modelling of absolute and unbiased RI improves generalization, such that the approach is applicable to a broad range of new samples without retraining to facilitate immediate applicability. The performance, reliability and scalability of this technology are extensively characterized, and its various applications within single-cell profiling at unprecedented scales (which can generate new experimentally testable hypotheses) are demonstrated.


Assuntos
Aprendizado Profundo , Tomografia com Microscopia Eletrônica/métodos , Imageamento Tridimensional/métodos , Análise de Célula Única/métodos , Frações Subcelulares/metabolismo , Células 3T3 , Actinas/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Gotículas Lipídicas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Imagem Óptica/métodos , Refratometria
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa