RESUMO
Sizable pools of freely circulating glycosyltransferases are in blood, but understanding their physiologic contributions has been hampered because functional sources of sugar donor substrates needed to drive extracellular glycosylation have not been identified. The blood-borne ST6Gal-1 produced and secreted by the liver is the most noted among the circulatory glycosyltransferases, and decorates marrow hematopoietic progenitor cells with α2,6-linked sialic acids and restricts blood cell production. Platelets, upon activation, secrete a plethora of bioactive molecules including pro- and anti-inflammatory mediators. Cargos of sugar donor substrates for glycosyltransferase activity have also been reported in platelets. Here, we implemented a cell-based system to interrogate platelets for their ability to deliver effectively the sugar donor substrate for extracellular ST6Gal-1 to function. We report that thrombin-activated platelets, at physiologic concentration and pH, can efficiently and effectively substitute for CMP-sialic acid in extracellular ST6Gal-1-mediated sialylation of target cell surfaces. Activated platelets can also supply the sialic acid donor to sialylate the synthetic acceptor, Gal(ß1,4)GlcNAcα-o-benzyl, with the product Sia(α2,6)Gal(ß1,4)GlcNAcα-o-benzyl structurally confirmed by LC/MS. Platelet-secreted donor substrate was recovered in the 100,000 × g sediment, strongly suggesting the association of this otherwise soluble substrate, putatively CMP-sialic acid, within platelet microparticles. Sequestration within microparticles may facilitate delivery of glycosylation substrate at effective dosages to sites of extracellular glycosylation while minimizing excessive dilution.
Assuntos
Plaquetas/citologia , Plaquetas/metabolismo , Espaço Extracelular/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Animais , Plaquetas/enzimologia , Camundongos , Sialiltransferases/metabolismo , beta-D-Galactosídeo alfa 2-6-SialiltransferaseRESUMO
Modularly assembled ligands were designed to target the RNAs that cause two currently untreatable neuromuscular disorders, myotonic dystrophy types 1 (DM1) and 2 (DM2). DM1 is caused by an expanded repeating sequence of CUG, and DM2 is caused by expanded CCUG repeats. Both are present in noncoding regions and fold into hairpins with either repeating 1x1 nucleotide UU (DM1) or 2x2 nucleotide 5'-CU/3'-UC (DM2) internal loops separated by two GC pairs. The repeats are toxic because they sequester the RNA splicing regulator muscleblind-like 1 protein (MBNL1). Rational design of ligands targeting these RNAs was enabled by a database of RNA motif-ligand partners compiled by using two-dimensional combinatorial screening (2DCS). One 2DCS study found that the 6''-azido-kanamycin A module binds internal loops similar to those found in DM1 and DM2. In order to further enhance affinity and specificity, the ligand was assembled on a peptoid backbone to precisely control valency and the distance between ligand modules. Designed compounds are more potent and specific binders to the toxic RNAs than MBNL1 and inhibit the formation of the RNA-protein complexes with nanomolar IC(50) values. This study shows that three important factors govern potent inhibition: 1) the surface area sequestered by the assembled ligands; 2) the spacing between ligand modules since a longer distance is required to target DM2 RNAs than DM1 RNAs; and 3) flexibility in the modular assembly scaffold used to display the RNA-binding module. These results have impacts on the general design of assembled ligands targeting RNAs present in genomic sequence.
Assuntos
Ligantes , Distrofia Miotônica/genética , RNA/metabolismo , Animais , Sequência de Bases , Bases de Dados Factuais , Desenho de Fármacos , Citometria de Fluxo , Humanos , Camundongos , Mioblastos/metabolismo , Distrofia Miotônica/tratamento farmacológico , RNA/antagonistas & inibidores , RNA/química , Proteínas de Ligação a RNA/metabolismoRESUMO
Herein, we describe the design of high affinity ligands that bind expanded rCUG and rCAG repeat RNAs expressed in myotonic dystrophy type 1 (DM1) and spinocerebellar ataxia type 3. These ligands also inhibit, with nanomolar IC(50) values, the formation of RNA-protein complexes that are implicated in both disorders. The expanded rCUG and rCAG repeats form stable RNA hairpins with regularly repeating internal loops in the stem and have deleterious effects on cell function. The ligands that bind the repeats display a derivative of the bisbenzimidazole Hoechst 33258, which was identified by searching known RNA-ligand interactions for ligands that bind the internal loop displayed in these hairpins. A series of 13 modularly assembled ligands with defined valencies and distances between ligand modules was synthesized to target multiple motifs in these RNAs simultaneously. The most avid binder, a pentamer, binds the rCUG repeat hairpin with a K(d) of 13 nM. When compared to a series of related RNAs, the pentamer binds to rCUG repeats with 4.4- to >200-fold specificity. Furthermore, the affinity of binding to rCUG repeats shows incremental gains with increasing valency, while the background binding to genomic DNA is correspondingly reduced. Then, it was determined whether the modularly assembled ligands inhibit the recognition of RNA repeats by Muscleblind-like 1 (MBNL1) protein, the expanded-rCUG binding protein whose sequestration leads to splicing defects in DM1. Among several compounds with nanomolar IC(50) values, the most potent inhibitor is the pentamer, which also inhibits the formation of rCAG repeat-MBNL1 complexes. Comparison of the binding data for the designed synthetic ligands and MBNL1 to repeating RNAs shows that the synthetic ligand is 23-fold higher affinity and more specific to DM1 RNAs than MBNL1. Further studies show that the designed ligands are cell permeable to mouse myoblasts. Thus, cell permeable ligands that bind repetitive RNAs have been designed that exhibit higher affinity and specificity for binding RNA than natural proteins. These studies suggest a general approach to targeting RNA, including those that cause RNA dominant disease.
Assuntos
Desenho de Fármacos , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , RNA Mensageiro/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Animais , Sequência de Bases , Bisbenzimidazol/análogos & derivados , Bisbenzimidazol/metabolismo , Bisbenzimidazol/farmacologia , Bisbenzimidazol/uso terapêutico , Linhagem Celular , Humanos , Concentração Inibidora 50 , Sequências Repetidas Invertidas/genética , Ligantes , Camundongos , Permeabilidade , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Reprodutibilidade dos Testes , Especificidade por SubstratoRESUMO
Myotonic muscular dystrophy types 1 and 2 (DM1 and DM2, respectively) are caused by expansions of repeating nucleotides in noncoding regions of RNA. In DM1, the expansion is an rCUG triplet repeat, whereas the DM2 expansion is an rCCUG quadruplet repeat. Both RNAs fold into hairpin structures with periodically repeating internal loops separated by two 5'GC/3'CG base pairs. The sizes of the loops, however, are different: the DM1 repeat forms 1 x 1 nucleotide UU loops while the DM2 repeat forms 2 x 2 nucleotide 5'CU/3'UC loops. DM is caused when the expanded repeats bind the RNA splicing regulator Muscleblind-like 1 protein (MBNL1), thus compromising its function. Therefore, one potential therapeutic strategy for these diseases is to prevent MBNL1 from binding the toxic RNA repeats. Previously, we designed nanomolar inhibitors of the DM2-MBNL1 interaction by modularly assembling 6'-N-5-hexyonate kanamycin A (K) onto a peptoid backbone. The K ligand binds the 2 x 2 pyrimidine-rich internal loops found in the DM2 RNA with high affinity. The best compound identified from that study contains three K modules separated by four propylamine spacing modules and is 20-fold selective for the DM2 RNA over the DM1 RNA. Because the modularly assembled K-containing compounds also bound the DM1 RNA, albeit with lower affinity, and because the loop size is different, we hypothesized that the optimal DM1 RNA binder may display K modules separated by a shorter distance. Indeed, here the ideal DM1 RNA binder has only two propylamine spacing modules separating the K ligands. Peptoids displaying three and four K modules on a peptoid scaffold bind the DM1 RNA with K(d)'s of 20 nM (3-fold selective for DM1 over DM2) and 4 nM (6-fold selective) and inhibit the RNA-protein interaction with IC(50)'s of 40 and 7 nM, respectively. Importantly, by coupling the two studies together, we have determined that appropriate spacing can affect binding selectivity by 60-fold (20- x 3-fold). The trimer and tetramer also bind approximately 13- and approximately 63-fold more tightly to DM1 RNAs than does MBNL1. The modularly assembled compounds are cell permeable and nontoxic as determined by flow cytometry. The results establish that for these two systems: (i) a programmable modular assembly approach can provide synthetic ligands for RNA with affinities and specificities that exceed those of natural proteins; and, (ii) the spacing of ligand modules can be used to tune specificity for one RNA target over another.
Assuntos
Distrofias Musculares/genética , RNA/genética , Animais , Linhagem Celular , Citometria de Fluxo , Camundongos , RNA/químicaRESUMO
This paper presents the design of a novel linear series elastic actuator purposely designed to match the requirements of robots for wrist rehabilitation: backdriveability, intrinsic compliance, and capability to be controlled as ideal force/torque sources. An existing rehabilitation robot is adapted to include intrinsic compliance in the design. A novel linear compliant element is designed to meet dimensional and force/stiffness requirements; a force sensing scheme involving a Hall-effect sensor is optimized in FEM simulations and developed. Linearity tests of the compliant sensing element show a maximum of 4.5% of FSO combined nonlinearity and hysteresis errors. Characterization experiments show that the developed system introduces physical compliance, still guaranteeing accurate force control in a frequency range largely compatible with that required for wrist assistance during rehabilitation.
Assuntos
Reabilitação/instrumentação , Robótica/instrumentação , Punho/fisiologia , Desenho de Equipamento , Retroalimentação , Análise de Elementos Finitos , HumanosRESUMO
The development of small-molecule therapeutics that target RNA remains a promising field but one hampered with considerable challenges that include programming high affinity, specificity, cell permeability, and favorable pharmacokinetic profiles. Previously, we employed the use of peptoids to modularly display RNA-binding modules to enhance binding affinity and specificity by altering valency and the distance between ligand modules. Herein, factors that affect uptake, localization, and toxicity of peptoids that display a kanamycin derivative into a variety of mammalian cells lines are reported. A series of peptoids that display various spacing modules was synthesized to determine if the spacing module affects permeability and localization. The spacing module does affect cellular permeability into C2C12, A549, HeLa, and MCF7 cell lines but not into Jurkat cells. Moreover, the modularly assembled peptoids carrying the kanamycin cargo localize in the cytoplasm and perinuclear region of C2C12 and A549 cells and throughout HeLa cells, including the nucleus. These studies could contribute to the development of general strategies to afford cell permeable, modularly assembled small molecules that specifically target RNAs present in a variety of cell types.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Canamicina/farmacocinética , Peptoides/química , Peptoides/farmacocinética , Animais , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células HeLa , Histocitoquímica , Humanos , Células Jurkat , Canamicina/química , Camundongos , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Peptoides/síntese química , Peptoides/toxicidadeRESUMO
BACKGROUND: Chronic kidney disease (CKD) is a worldwide health problem with increasing prevalence and poor outcomes, including severe cardiovascular disease and renal osteodystrophy. With advances in medical treatment, patients with CKD are living longer and require oral care. The aim of this study is to determine the effects of CKD and dietary phosphate on mandibular bone structure using a uremic mouse model. METHODS: Uremia (U) was induced in female dilute brown agouti/2 mice by partial renal ablation. Uremic mice received a normal-phosphate (NP) or a high-phosphate (HP) diet. sham surgeries were performed in a control group of mice; half received an NP diet, and the other half was fed an HP diet. At termination, animals were sacrificed, and mandibles were collected for microcomputed tomography (micro-CT) and histologic analysis. RESULTS: Sera levels of blood urea nitrogen, parathyroid hormone, and alkaline phosphatase were significantly increased in U/NP and U/HP mice versus sham controls, whereas serum calcium was increased in the U/HP group, and no differences were noted in serum phosphate levels among groups. Micro-CT analyses revealed a significant reduction in cortical bone thickness and an increase in trabecular thickness and trabecular bone volume/tissue volume in U/NP and U/HP groups compared to the sham/NP group. A significant reduction in cortical bone thickness was also found in the sham/HP group versus the sham/NP group. Histologic evaluation confirmed increased trabeculation in the U groups. CONCLUSION: CKD in mice, especially under conditions of HP feeding, results in marked effects on alveolar bone homeostasis.
Assuntos
Processo Alveolar/patologia , Mandíbula/patologia , Doenças Mandibulares/etiologia , Insuficiência Renal Crônica/complicações , Uremia/complicações , Animais , Antracenos , Modelos Animais de Doenças , Feminino , Doenças Mandibulares/patologia , Doenças Mandibulares/prevenção & controle , Camundongos , Camundongos Endogâmicos DBA , Fósforo na Dieta , Insuficiência Renal Crônica/patologia , Estatísticas não Paramétricas , Uremia/patologia , Microtomografia por Raio-XRESUMO
Most ligands targeting RNA are identified through screening a therapeutic target for binding members of a ligand library. A potential alternative way to construct RNA binders is through rational design using information about the RNA motifs ligands prefer to bind. Herein, we describe such an approach to design modularly assembled ligands targeting the RNA that causes myotonic dystrophy type 2 (DM2), a currently untreatable disease. A previous study identified that 6'-N-5-hexynoate kanamycin A (1) prefers to bind 2x2 nucleotide, pyrimidine-rich RNA internal loops. Multiple copies of such loops are found in the RNA hairpin that causes DM2. The 1 ligand was then modularly displayed on a peptoid scaffold with varied number and spacing to target several internal loops simultaneously. Modularly assembled ligands were tested for binding to a series of RNAs and for inhibiting the formation of the toxic DM2 RNA-muscleblind protein (MBNL-1) interaction. The most potent ligand displays three 1 modules, each separated by four spacing submonomers, and inhibits the formation of the RNA-protein complex with an IC(50) of 25 nM. This ligand has higher affinity and is more specific for binding the DM2 RNA than MBNL-1. It binds the DM2 RNA at least 30 times more tightly than related RNAs and 15-fold more tightly than MBNL-1. A related control peptoid displaying 6'-N-5-hexynoate neamine (2) is >100-fold less potent at inhibiting the RNA-protein interaction and binds to DM2 RNA >125-fold more weakly. Uptake studies into a mouse myoblast cell line also show that the most potent ligand is cell permeable.