RESUMO
Mycobacterium tuberoculosis (Mtb) is a contagious pathogen that causes human tuberculosis (TB). TB is a major global health threat that causes 9.6 million illnesses and 1.5 million deaths per year. Recent studies have suggested Mtb-secreted proteins as new candidates for therapeutic drugs and vaccines. LprG is a Mtb-secreted surface glycolipoprotein encoded by lprG (Rv1411c), which forms an operon with Rv1410c, where Rv1410c encodes P55, an efflux pump membrane protein. Various in vitro and in vivo studies have reported on the target-binding activity, cell envelope biosynthesis, and mycobacterial virulence of LprG. However, the anti-inflammatory effect of LprG in macrophages has not yet been investigated. In this study, we demonstrated that LprG can suppress lipopolysaccharide (LPS)-induced inflammation in a macrophage model. LprG inhibited LPS-stimulated nitric oxide (NO) production. LprG also suppressed expression of inducible cyclooxygenase-2 (COX-2) and nitric oxide synthase (iNOS) at the transcriptional and protein levels. In addition, LprG decreased mRNA expression of the pro-inflammatory cytokines interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-α (TNF-α). Furthermore, LprG attenuated nuclear factor kappa-B (NF-κB) translocation and IκB phosphorylation. Moreover, LprG specifically inhibited phosphorylated kinases such as c-Jun N-terminal kinase (p-JNK) and extracellular signal-regulated kinase 1/2 (p-ERK1/2), but not p-p38. Taken together, these results suggest that LprG inhibits LPS-stimulated inflammation via downregulation of NO, COX-2, iNOS, and pro-inflammatory cytokines through the NF-κB, AP-1, and MAPK signaling pathways. The present study will aid in the development of anti-inflammatory medications using Mtb. The organism, which has long been regarded as a human pathogenic or human health-threating agent, can be utilized as a future medical resource.
Assuntos
Lipopolissacarídeos , Mycobacterium tuberculosis , Animais , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mycobacterium tuberculosis/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismoRESUMO
Melanin causes melasma, freckles, age spots, and chloasma. Anti-melanogenic agents can prevent disease-related hyperpigmentation. In the present study, the dose-dependent tyrosinase inhibitory activity of Avenanthramide (Avn)-A-B-C was demonstrated, and 100 µM Avn-A-B-C produced the strongest competitive inhibition against inter-cellular tyrosinase and melanin synthesis. Avn-A-B-C inhibits the expression of melanogenesis-related proteins, such as TRP1 and 2. Molecular docking simulation revealed that AvnC (-7.6 kcal/mol) had a higher binding affinity for tyrosinase than AvnA (-7.3 kcal/mol) and AvnB (-6.8 kcal/mol). AvnC was predicted to interact with tyrosinase through two hydrogen bonds at Ser360 (distance: 2.7 Å) and Asn364 (distance: 2.6 Å). In addition, AvnB and AvnC were predicted to be skin non-sensitizers in mammals by the Derek Nexus Quantitative Structure-Activity Relationship system.
Assuntos
Simulação por Computador , Melaninas/biossíntese , Melanoma/tratamento farmacológico , Monofenol Mono-Oxigenase/antagonistas & inibidores , Pele/efeitos dos fármacos , alfa-MSH/farmacologia , ortoaminobenzoatos/farmacologia , Hormônios/farmacologia , Humanos , Técnicas In Vitro , Melanoma/metabolismo , Melanoma/patologia , Simulação de Acoplamento Molecular , Células Tumorais CultivadasRESUMO
In our previous studies, structurally similar compounds of ascochlorin and ascofuranone exhibited anti-inflammatory activity. Neural inflammation plays a significant role in the commence and advancement of neurodegenerative diseases. It is not known whether 4-O-carboxymethylascochlorin (AS-6) regulates the initial stage of inflammatory responses at the cellular level in BV2 microglia cells. We here investigated the anti-inflammatory effects of AS-6 treatment in microglia cells with the microglial protection in neurons. We found that the lipopolysaccharide (LPS)-stimulated production of nitric oxide, a main regulator of inflammation, is suppressed by AS-6 in BV2 microglial cells. In addition, AS-6 dose-dependently suppressed the increase in COX-2 protein and messenger RNA levels in LPS-stimulated BV2 cells. Moreover, AS-6 inhibited the expression and secretion of proinflammatory cytokines in BV2 microglial cells. At the intracellular level, AS-6 inhibited LPS-activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in BV2 microglial cells. AS-6 negatively affected mitogen-activated protein kinases (MAPK) and Akt phosphorylation: Phosphorylated forms of ERK, JNK, p38, and Akt decreased. To check whether AS-6 protects against inflammatory inducer-mediated neurotoxicity, neuronal SH-SY5Y cells were coincubated with BV2 cells in conditioned medium. AS-6 exerted a neuroprotective effect by suppressing microglial activation by LPS or amyloid-ß peptide. AS-6 is a promising suppressor of inflammatory responses in LPS-induced BV2 cells by attenuating NF-κB and MAPKs signaling. AS-6 protected against microglial-mediated neurotoxicity in SH-SY5Y and BV2 cocultured cells from LPS-induced neuroinflammation and death via inhibiting MAPK, NF-κB, and Akt pathways.
RESUMO
BACKGROUND: Enterococcus faecalis 2001 is a probiotic lactic acid bacterium and has been used as a biological response modifier (BRM). From physiological limitation of bacterial preservation in storage and safety, the live E. faecalis 2001 has been heat-treated and the BRM components containing high level of ß-glucan, named EF-2001, were prepared. METHOD: The heat-treated EF-2001 has been examined for the antioxidative potential for radical scavenging and anti-tumor activities as well as immune-enhancing response in mice. Lymphocyte versus polymorphonuclear leukocyte ratio was increased in mice upon treatment with EF-2001. The number of lymphocytes was increased in the EF-2001-treated group. In the mice bearing two different Ehrlich solid and Sarcoma-180 carcinomas, the treatment with EF-2001 resulted in anti-tumor action. Tumor-suppressive capacity upon treatment with EF-2001 was significantly increased compared to normal controls. RESULTS: During the time interval administration of 5 weeks between the priming and secondary administration of EF-2001, the expression and production levels of TNF-α were also observed in the EF- 2001-administered mice. Additionally, anti-tumor activity examined with the intravenous administration of EF 2001 with a 34 times interval was also observed, as the growth of Sarcoma180 cells was clearly inhibited by the EF-2001. CONCLUSION: From the results, it was suggested that the immune response is enhanced due to antioxidative activity caused by the EF-2001 and anti-tumor activity by NK cells and TNF-α.
Assuntos
Antineoplásicos/farmacologia , Enterococcus faecalis , Fatores Imunológicos/farmacologia , Linfócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , beta-Glucanas/farmacologia , Animais , Antineoplásicos/isolamento & purificação , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/imunologia , Fatores Imunológicos/isolamento & purificação , Células Matadoras Naturais/efeitos dos fármacos , Linfócitos/imunologia , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos ICR , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Probióticos , Sarcoma 180/tratamento farmacológico , Sarcoma 180/imunologia , Fator de Necrose Tumoral alfa/análise , beta-Glucanas/isolamento & purificaçãoRESUMO
The disialoganglioside GD3 has been considered to be involved in tumor progression or suppression in various tumor cells. However, the significance of the biological functions of GD3 in breast cancer cells is still controversial. This prompted us to study the possible relationship(s) between GD3 expression and the metastatic potential of a breast cancer MDA-MB231 cells as an estrogen receptor negative (ER-) type. The human GD3 synthase cDNA was transfected into MDA-MB231 cells, and G-418 bulk selection was used to select cells stably overexpressing the GD3 synthase. In vitro invasion potentials of the GD3 synthase over-expressing cells (pc3-GD3s) were significantly suppressed when compared with control cells. Expression of intercellular adhesion molecule-1 (ICAM-1; CD54) was down-regulated in the pc3-GD3s cells and the decrease in ICAM-I expression is directly related to the decrease in invasiveness of the pc3-GD3s cells. Another type of ER negative SK-BR3 cells exhibited the similar level of ICAM-1 expression as MDA-MB231 cells, while the ER positive MCF-7 cells (ER+) showed the increased expression level of ICAM-1. Then, we investigated signaling pathways known to control ICAM-1 expression. No difference was observed in the phosphorylation of ERK and p38 between the pc3-GD3s and control cells (pc3), but the activation of AKT was inhibited in pc3-GD3s, and not in the control (pc3). In addition, the composition of total gangliosides was changed between control (pc3) and pc3-GD3s cells, as confirmed by HPTLC. The pc3-GD3s cells had an accumulation of the GD2 instead of the GD3. RT-PCR results showed that not only GD3 synthase, but also GM2/GD2 synthase (ß4-GalNc T) expression was increased in pc3-GD3s cells. Overexpression of GD3 synthase suppresses the invasive potential of human breast cancer MDA-MB-231 cells through down-regulation of ICAM-1 and the crucial pathway to allow the apoptotic effect has been attributed to accumulation of the GD2 ganglioside. ER has been linked to the ICAM-1 expression with GD3 to GD2 conversion in human breast cancer cells. This is the first finding of the endogenous sialyltransferase functions in tumor cells.