Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Magn Reson Med ; 91(4): 1464-1477, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38044680

RESUMO

PURPOSE: The reproducibility of scientific reports is crucial to advancing human knowledge. This paper is a summary of our experience in replicating a balanced SSFP half-radial dual-echo imaging technique (bSTAR) using open-source frameworks as a response to the 2023 ISMRM "repeat it with me" Challenge. METHODS: We replicated the bSTAR technique for thoracic imaging at 0.55T. The bSTAR pulse sequence is implemented in Pulseq, a vendor neutral open-source rapid sequence prototyping environment. Image reconstruction is performed with the open-source Berkeley Advanced Reconstruction Toolbox (BART). The replication of bSTAR, termed open-source bSTAR, is tested by replicating several figures from the published literature. Original bSTAR, using the pulse sequence and image reconstruction developed by the original authors, and open-source bSTAR, with pulse sequence and image reconstruction developed in this work, were performed in healthy volunteers. RESULTS: Both echo images obtained from open-source bSTAR contain no visible artifacts and show identical spatial resolution and image quality to those in the published literature. A direct head-to-head comparison between open-source bSTAR and original bSTAR on a healthy volunteer indicates that open-source bSTAR provides adequate SNR, spatial resolution, level of artifacts, and conspicuity of pulmonary vessels comparable to original bSTAR. CONCLUSION: We have successfully replicated bSTAR lung imaging at 0.55T using two open-source frameworks. Full replication of a research method solely relying on information on a research paper is unfortunately rare in research, but our success gives greater confidence that a research methodology can be indeed replicated as described.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos
2.
Magn Reson Med ; 92(3): 1115-1127, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38730562

RESUMO

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.


Assuntos
Encéfalo , Crowdsourcing , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Mapeamento Encefálico/métodos , Masculino , Feminino , Adulto , Algoritmos
3.
Magn Reson Med ; 89(4): 1522-1530, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36404674

RESUMO

PURPOSE: To determine R2 and R 2 ' $$ {R}_2^{\prime } $$ transverse relaxation rates in healthy lung parenchyma at 0.55 T. This is important in that it informs the design and optimization of new imaging methods for 0.55T lung MRI. METHODS: Experiments were performed in 3 healthy adult volunteers on a prototype whole-body 0.55T MRI, using a custom free-breathing electrocardiogram-triggered, single-slice echo-shifted multi-echo spin echo (ES-MCSE) pulse sequence with respiratory navigation. Transverse relaxation rates R2 and R 2 ' $$ {R}_2^{\prime } $$ and off-resonance ∆f were jointly estimated using nonlinear least-squares estimation. These measurements were compared against R2 estimates from T2 -prepared balanced SSFP (T2 -Prep bSSFP) and R 2 * $$ {R}_2^{\ast } $$ estimates from multi-echo gradient echo, which are used widely but prone to error due to different subvoxel weighting. RESULTS: The mean R2 and R 2 ' $$ {R}_2^{\prime } $$ values of lung parenchyma obtained from ES-MCSE were 17.3 ± 0.7 Hz and 127.5 ± 16.4 Hz (T2  = 61.6 ± 1.7 ms; T 2 ' $$ {\mathrm{T}}_2^{\prime } $$  = 9.5 ms ± 1.6 ms), respectively. The off-resonance estimates ranged from -60 to 30 Hz. The R2 from T2 -Prep bSSFP was 15.7 ± 1.7 Hz (T2  = 68.6 ± 8.6 ms) and R 2 * $$ {R}_2^{\ast } $$ from multi-echo gradient echo was 131.2 ± 30.4 Hz ( T 2 * $$ {\mathrm{T}}_2^{\ast } $$  = 8.0 ± 2.5 ms). Paired t-test indicated that there is a significant difference between the proposed and reference methods (p < 0.05). The mean R2 estimate from T2 -Prep bSSFP was slightly smaller than that from ES-MCSE, whereas the mean R 2 ' $$ {R}_2^{\prime } $$ and R 2 * $$ {R}_2^{\ast } $$ estimates from ES-MCSE and multi-echo gradient echo were similar to each other across all subjects. CONCLUSIONS: Joint estimation of transverse relaxation rates and off-resonance is feasible at 0.55 T with a free-breathing electrocardiogram-gated and navigator-gated ES-MCSE sequence. At 0.55 T, the mean R2 of 17.3 Hz is similar to the reported mean R2 of 16.7 Hz at 1.5 T, but the mean R 2 ' $$ {R}_2^{\prime } $$ of 127.5 Hz is about 5-10 times smaller than that reported at 1.5 T.


Assuntos
Imageamento por Ressonância Magnética , Respiração , Adulto , Humanos , Imageamento por Ressonância Magnética/métodos , Eletrocardiografia , Pulmão/diagnóstico por imagem
4.
Magn Reson Med ; 90(5): 1949-1957, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37317635

RESUMO

PURPOSE: To demonstrate the feasibility of high-resolution morphologic lung MRI at 0.55 T using a free-breathing balanced steady-state free precession half-radial dual-echo imaging technique (bSTAR). METHODS: Self-gated free-breathing bSTAR (TE1 /TE2 /TR of 0.13/1.93/2.14 ms) lung imaging in five healthy volunteers and a patient with granulomatous lung disease was performed using a 0.55 T MR-scanner. A wobbling Archimedean spiral pole (WASP) trajectory was used to ensure a homogenous coverage of k-space over multiple breathing cycles. WASP uses short-duration interleaves randomly tilted by a small polar angle and rotated by a golden angle about the polar axis. Data were acquired continuously over 12:50 min. Respiratory-resolved images were reconstructed off-line using compressed sensing and retrospective self-gating. Reconstructions were performed with a nominal resolution of 0.9 mm and a reduced isotropic resolution of 1.75 mm corresponding to shorter simulated scan times of 8:34 and 4:17 min, respectively. Analysis of apparent SNR was performed in all volunteers and reconstruction settings. RESULTS: The technique provided artifact-free morphologic lung images in all subjects. The short TR of bSTAR in conjunction with a field strength of 0.55 T resulted in a complete mitigation of off-resonance artifacts in the chest. Mean SNR values in healthy lung parenchyma for the 12:50 min scan were 3.6 ± 0.8 and 24.9 ± 6.2 for 0.9 mm and 1.75 mm reconstructions, respectively. CONCLUSION: This study demonstrates the feasibility of morphologic lung MRI with a submillimeter isotropic spatial resolution in human subjects with bSTAR at 0.55 T.


Assuntos
Imageamento por Ressonância Magnética , Respiração , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem
5.
Magn Reson Med ; 89(2): 746-755, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36198043

RESUMO

PURPOSE: To determine if contemporary 0.55 T MRI supports the use of contrast-optimal flip angles (FA) for simultaneous multi-slice (SMS) balanced SSFP (bSSFP) cardiac function assessment, which is impractical at conventional field strengths because of excessive SAR and/or banding artifacts. METHODS: Blipped-CAIPI bSSFP was combined with spiral sampling for ventricular function assessment at 0.55 T. Cine movies with single band and SMS factors of 2 and 3 (SMS 2 and 3), and FA ranging from 60° to 160°, were acquired in seven healthy volunteers. Left ventricular blood and myocardial signal intensity (SI) normalized by background noise and blood-myocardium contrast were measured and compared across acquisition settings. RESULTS: Myocardial SI was slightly higher in single band than in SMS and decreased with an increasing FA. Blood SI increased as the FA increased for single band, and increment was small for FA ≥120°. Blood SI for SMS 2 and 3 increased with an increasing FA up to ∼100°. Blood-myocardium contrast increased with an increasing FA for single band, peaked at FA = 160° (systole: 28.43, diastole: 29.15), attributed mainly to reduced myocardial SI when FA ≥120°. For SMS 2, contrast peaked at 120° (systole: 21.43, diastole: 19.85). For SMS 3, contrast peaked at 120° in systole (16.62) and 100° in diastole (19.04). CONCLUSIONS: Contemporary 0.55 T MR scanners equipped with high-performance gradient systems allow the use of contrast-optimal FA for SMS accelerated bSSFP cine examinations without compromising image quality. The contrast-optimal FA was found to be 140° to 160° for single band and 100° to 120° for SMS 2 and 3.


Assuntos
Coração , Interpretação de Imagem Assistida por Computador , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Ventrículos do Coração , Miocárdio , Imagem Cinética por Ressonância Magnética/métodos
6.
Magn Reson Med ; 88(2): 691-710, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35445768

RESUMO

PURPOSE: To develop and evaluate an improved strategy for compensating concomitant field effects in non-Cartesian MRI at the time of image reconstruction. THEORY: We present a higher-order reconstruction method, denoted as MaxGIRF, for non-Cartesian imaging that simultaneously corrects off-resonance, concomitant fields, and trajectory errors without requiring specialized hardware. Gradient impulse response functions are used to predict actual gradient waveforms, which are in turn used to estimate the spatiotemporally varying concomitant fields based on analytic expressions. The result, in combination with a reference field map, is an encoding matrix that incorporates a correction for all three effects. METHODS: The MaxGIRF reconstruction is applied to noiseless phantom simulations, spiral gradient-echo imaging of an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom, and axial and sagittal multislice spiral spin-echo imaging of a healthy volunteer at 0.55 T. The MaxGIRF reconstruction was compared against previously established concomitant field-compensation and image-correction methods. Reconstructed images are evaluated qualitatively and quantitatively using normalized RMS error. Finally, a low-rank approximation of MaxGIRF is used to reduce computational burden. The accuracy of the low-rank approximation is studied as a function of minimum rank. RESULTS: The MaxGIRF reconstruction successfully mitigated blurring artifacts both in phantoms and in vivo and was effective in regions where concomitant fields counteract static off-resonance, superior to the comparator method. A minimum rank of 8 and 30 for axial and sagittal scans, respectively, gave less than 2% error compared with the full-rank reconstruction. CONCLUSIONS: The MaxGIRF reconstruction simultaneously corrects off-resonance, trajectory errors, and concomitant field effects. The impact of this method is greatest when imaging with longer readouts and/or at lower field strength.


Assuntos
Algoritmos , Artefatos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
7.
Magn Reson Med ; 84(5): 2846-2857, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32367574

RESUMO

PURPOSE: To develop a numerical approximation to the general kinetic model for arterial spin labeling (ASL) quantification that will enable greater flexibility in ASL acquisition methods. THEORY: The Bloch-McConnell equations are extended to include the effects of single-compartment inflow and outflow on both the transverse and longitudinal magnetization. These can be solved using an extension of Jaynes' matrix formalism with piecewise constant approximation of incoming labeled arterial flow and a clearance operator for outgoing venous flow. METHODS: The proposed numerical approximation is compared with the general kinetic model using simulations of pulsed labeling and pseudo-continuous labeling and a broad range of transit time and bolus duration for tissue blood flow of 0.6 mL/g/min. Accuracy of the approximation is studied as a function of the timestep using Monte-Carlo simulations. Three additional scenarios are demonstrated: (1) steady-pulsed ASL, (2) MR fingerprinting ASL, and (3) balanced SSFP and spoiled gradient-echo sequences. RESULTS: The proposed approximation was found to be arbitrarily accurate for pulsed labeling and pseudo-continuous labeling. The pulsed labeling/pseudo-continuous labeling approximation error compared with the general kinetic model was less than 0.002% (<0.002%) and less than 0.05% (<0.05%) for timesteps of 3 ms and 35 ms, respectively. The proposed approximation matched well with customized signal expressions of steady-pulsed ASL and MR fingerprinting ASL. The simulations of simultaneous modeling of flow, T2 , and magnetization transfer showed an increase in steady-state balanced SSFP and spoiled gradient signals. CONCLUSION: We demonstrate a numerical approximation of the "Bloch-McConnell flow" equations that enables arbitrarily accurate modeling of pulsed ASL and pseudo-continuous labeling signals comparable to the general kinetic model. This enables increased flexibility in the experiment design for quantitative ASL.


Assuntos
Artérias , Angiografia por Ressonância Magnética , Circulação Cerebrovascular , Cinética , Marcadores de Spin
8.
Arch Phys Med Rehabil ; 99(11): 2168-2174, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29476713

RESUMO

OBJECTIVES: To compare the effects of conventional core stabilization and dynamic neuromuscular stabilization (DNS) on anticipatory postural adjustment (APA) time, balance performance, and fear of falls in chronic hemiparetic stroke. DESIGN: Two-group randomized controlled trial with pretest-posttest design. SETTING: Hospital rehabilitation center. PARTICIPANTS: Adults with chronic hemiparetic stroke (N=28). INTERVENTIONS: Participants were randomly divided into either conventional core stabilization (n=14) or DNS (n=14) groups. Both groups received a total of 20 sessions of conventional core stabilization or DNS training for 30 minutes per session 5 times a week during the 4-week period. MAIN OUTCOME MEASURES: Electromyography was used to measure the APA time for bilateral external oblique (EO), transverse abdominis (TrA)/internal oblique (IO), and erector spinae (ES) activation during rapid shoulder flexion. Trunk Impairment Scale (TIS), Berg Balance Scale (BBS), and Falls Efficacy Scale (FES) were used to measure trunk movement control, balance performance, and fear of falling. RESULTS: Baseline APA times were delayed and fear of falling was moderately high in both the conventional core stabilization and DNS groups. After the interventions, the APA times for EO, TrA/IO, and ES were shorter in the DNS group than in the conventional core stabilization group (P<.008). The BBS and TIS scores (P<.008) and the FES score (P<.003) were improved compared with baseline in both groups, but FES remained stable through the 2-year follow-up period only in the DNS group (P<.003). CONCLUSIONS: This is the first clinical evidence highlighting the importance of core stabilization exercises for improving APA control, balance, and fear of falls in individuals with hemiparetic stroke.


Assuntos
Acidentes por Quedas/prevenção & controle , Terapia por Exercício/métodos , Paresia/reabilitação , Equilíbrio Postural/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Músculos Abdominais/fisiopatologia , Músculos Abdominais Oblíquos/fisiopatologia , Idoso , Antecipação Psicológica , Doença Crônica , Eletromiografia , Medo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Exercícios de Alongamento Muscular/métodos , Músculos Paraespinais/fisiopatologia , Paresia/fisiopatologia , Paresia/psicologia , Método Simples-Cego , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/psicologia , Tronco/fisiopatologia , Resultado do Tratamento
9.
Arch Phys Med Rehabil ; 93(5): 882-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22405955

RESUMO

OBJECTIVE: To investigate the feasibility and test-retest reliability of a novel electroencephalography (EEG)-based brain mapping system in healthy children and children with cerebral palsy (CP). DESIGN: Correlation statistics. SETTING: University brain mapping and neurorehabilitation laboratory. PARTICIPANTS: A convenience sample of children (N=12; 5 healthy children, mean ± SD, 12.6±0.89y; 7 children with CP, mean ± SD, 9.71±1.1y) participated in the study. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Mu band (8-12Hz) power values in event-related spectral perturbation maps during reach and grasp hand movements were repeatedly measured on 2 separate occasions (2h apart). Intraclass correlation coefficient (ICC(1,2)) tests were computed to determine test-retest reliability at the standard level of significance (P<.004). In addition, the feasibility of the system was determined by evaluating potential differences in the cortical activation areas obtained from topographical maps during actual reach and grasp motor tasks between healthy children and children with CP. RESULTS: The test-retest reliability results showed excellent reliability between the repeated measures, ranging from .93 (P=.000) to .99 (P=.000). Our EEG brain mapping system was capable of distinguishing differences in the cortical activity power (mu band power spectra) between healthy children and children with CP. CONCLUSIONS: To our knowledge, this study is the first evidence demonstrating the feasibility and reliability of the EEG brain mapping system. Clinically, this system provides important insights into neuroplasticity associated with motor recovery after treatment and can also be used as real-time neurofeedback or noninvasive neuromodulation in the course of neurologic rehabilitation.


Assuntos
Mapeamento Encefálico/métodos , Paralisia Cerebral/fisiopatologia , Movimento , Adolescente , Braço/fisiologia , Paralisia Cerebral/reabilitação , Criança , Eletroencefalografia , Estudos de Viabilidade , Feminino , Mãos/fisiologia , Humanos , Masculino , Reprodutibilidade dos Testes
10.
Arch Phys Med Rehabil ; 90(2): 348-53, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19236991

RESUMO

OBJECTIVE: To investigate the validity and reliability of the motor point detection system in cadavers and healthy young adults. DESIGN: Correlation statistics. SETTING: University research laboratory. PARTICIPANTS: Sixty-two lower limbs of 31 healthy young adults (mean age, 22.3+/-1.8) and 10 size-matched lower limbs from cadavers were used. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: The validity of the motor point detection system's motor point measure was determined by comparing the motor point locations of the lower-leg muscles obtained from the motor point detection system with the established anatomic motor point locations from our previous cadaveric dissection study. The anatomic motor points were determined by tracing the terminal motor nerve branches on soleus, medial, and lateral gastrocnemius muscles through the dissection of adult cadavers. The test-retest reliability was determined by repeatedly measuring the locations of motor points in healthy young adults on 2 separate occasions, approximately 24 hours apart. The intraclass correlation coefficient (ICC) was computed to determine correlation, and an independent t test was used to determine the difference between the demographic and clinical variables at the significance level (P<.05). RESULTS: Correlation analysis revealed relatively high validity between the motor point detection system and cadaver-dissected motor point location measurements (ICC(2,1)=.71-.92, P<.05). The test-retest reliability showed excellent correlation between the repeated measures (range, ICC(1,2)=.90-.95 at P<.05). CONCLUSIONS: Our results showed that the motor point detection system was accurate and consistent in the measurement of motor point locations of the lower-leg muscles. This system can be considered as an alternative device to localize motor points in clinical settings. Our motor point detection system warrants further investigation in pathologic population.


Assuntos
Perna (Membro)/inervação , Placa Motora/anatomia & histologia , Músculo Esquelético/inervação , Adulto , Cadáver , Impedância Elétrica , Feminino , Humanos , Perna (Membro)/anatomia & histologia , Masculino , Músculo Esquelético/anatomia & histologia , Reprodutibilidade dos Testes , Adulto Jovem
11.
J Athl Train ; 50(2): 147-55, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25531145

RESUMO

CONTEXT: The exact neuromechanical nature and relative contribution of the abdominal drawing-in maneuver (ADIM) to postural instability warrants further investigation in uninjured and injured populations. OBJECTIVE: To determine the effects of the ADIM on static core and unipedal postural stability in nonathletes with core instability. DESIGN: Controlled laboratory study. SETTING: University research laboratory. PATIENTS OR OTHER PARTICIPANTS: A total of 19 nonathletes (4 women: age = 22.3 ± 1.3 years, height = 164.0 ± 1.7 cm, mass = 56.0 ± 4.6 kg; 15 men: age = 24.6 ± 2.8 years, height = 172.6 ± 4.7 cm, mass = 66.8 ± 7.6 kg) with core instability. INTERVENTION(S): Participants received ADIM training with visual feedback 20 minutes each day for 7 days each week over a 2-week period. MAIN OUTCOME MEASURES(S): Core instability was determined using a prone formal test and measured by a pressure biofeedback unit. Unipedal postural stability was determined by measuring the center-of-pressure sway and associated changes in the abdominal muscle-thickness ratios. Electromyographic activity was measured concurrently in the external oblique, erector spinae, gluteus medius, vastus medialis oblique, tibialis anterior, and medial gastrocnemius muscles. RESULTS: All participants initially were unable to complete the formal test. However, after the 2-week ADIM training period, all participants were able to reduce the pressure biofeedback unit by a range of 4 to 10 mm Hg from an initial 70 mm Hg and maintain it at 60 to 66 mm Hg with minimal activation of the external oblique (t(18) = 3.691, P = .002) and erector spinae (t(18) = 2.823, P = .01) muscles. Monitoring of the pressure biofeedback unit and other muscle activations confirmed that the correct muscle contraction defining the ADIM was accomplished. This core stabilization was well maintained in the unipedal-stance position, as evidenced by a decrease in the center-of-pressure sway measures (t(18) range, 3.953-5.775, P < .001), an increased muscle-thickness ratio for the transverse abdominis (t(18) = -2.327, P = .03), and a reduction in external oblique muscle activity (t(18) = 3.172, P = .005). CONCLUSIONS: We provide the first evidence to highlight the positive effects of ADIM training on core and postural stability in nonathletes with core instability.


Assuntos
Músculos Abdominais , Dor Lombar , Equilíbrio Postural , Terapia de Tecidos Moles/métodos , Músculos Abdominais/diagnóstico por imagem , Músculos Abdominais/fisiopatologia , Adulto , Biorretroalimentação Psicológica/métodos , Eletromiografia/métodos , Feminino , Humanos , Dor Lombar/diagnóstico , Dor Lombar/fisiopatologia , Dor Lombar/terapia , Masculino , Contração Muscular/fisiologia , Reprodutibilidade dos Testes , Resultado do Tratamento , Ultrassonografia/métodos
12.
Biomed Mater Eng ; 24(1): 593-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24211943

RESUMO

This study highlights a novel spinal kinematic analysis method and the feasibility of X-ray imaging measurements to accurately assess thoracic spine motion. The advanced X-ray Nash-Moe method and analysis were used to compute the segmental range of motion in thoracic vertebra pedicles in vivo. This Nash-Moe X-ray imaging method was compared with a standardized method using the Vicon 3-dimensional motion capture system. Linear regression analysis showed an excellent and significant correlation between the two methods (R2 = 0.99, p < 0.05), suggesting that the analysis of spinal segmental range of motion using X-ray imaging measurements was accurate and comparable to the conventional 3-dimensional motion analysis system. Clinically, this novel finding is compelling evidence demonstrating that measurements with X-ray imaging are useful to accurately decipher pathological spinal alignment and movement impairments in idiopathic scoliosis (IS).


Assuntos
Movimento (Física) , Escoliose/patologia , Coluna Vertebral/patologia , Vértebras Torácicas/diagnóstico por imagem , Vértebras Torácicas/patologia , Adulto , Algoritmos , Fenômenos Biomecânicos , Calibragem , Humanos , Modelos Lineares , Interpretação de Imagem Radiográfica Assistida por Computador , Amplitude de Movimento Articular , Análise de Regressão , Reprodutibilidade dos Testes , Software , Raios X , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa