RESUMO
Decursin is a major biological active component of Angelica gigas Nakai and is known to induce apoptosis of metastatic prostatic cancer cells. Recently, other reports have been commissioned to examine the anticancer activities of this plant. In this study, we evaluated the inhibitory activity and related mechanism of action of decursin against glioblastoma cell line. Decursin demonstrated cytotoxic effects on U87 and C6 glioma cells in a dose-dependent manner but not in primary glial cells. Additionally, decursin increased apoptotic bodies and phosphorylated JNK and p38 in U87 cells. Decursin also down-regulated Bcl-2 as well as cell cycle dependent proteins, CDK-4 and cyclin D1. Furthermore, decursin-induced apoptosis was dependent on the caspase activation in U87 cells. Taken together, our data provide the evidence that decursin induces apoptosis in glioblastoma cells, making it a potential candidate as a chemotherapeutic drug against brain tumor.
RESUMO
Familial Parkinson's disease (PD) has been linked to point mutations and duplication of the α-synuclein (α-syn) gene. Mutant α-syn expression increases the vulnerability of neurons to exogenous insults. In this study, we developed a new PD model in the transgenic mice expressing mutant hemizygous (hemi) or homozygous (homo) A53T α-synuclein (α-syn Tg) and their wildtype (WT) littermates by treatment with sub-toxic (10 mg/kg, i.p., daily for 5 days) or toxic (30 mg/kg, i.p., daily for 5 days) dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Tyrosine hydroxylase and Bcl-2 levels were reduced in the α-syn Tg but not WT mice by sub-toxic MPTP injection. In the adhesive removal test, time to remove paper was significantly increased only in the homo α-syn Tg mice. In the challenging beam test, the hemi and homo α-syn Tg mice spent significantly longer time to traverse as compared to that of WT group. In order to find out responsible proteins related with vulnerability of mutant α-syn expressed neurons, DJ-1 and ubiquitin enzyme expressions were examined. In the SN, DJ-1 and ubiquitin conjugating enzyme, UBE2N, levels were significantly decreased in the α-syn Tg mice. Moreover, A53T α-syn overexpression decreased DJ-1 expression in SH-SY5Y cells. These findings suggest that the vulnerability to oxidative injury such as MPTP of A53T α-syn mice can be explained by downregulation of DJ-1.
RESUMO
Melanin-concentrating hormone (MCH) is a highly conserved neuropeptide known to exhibit important functions in the brain. Some studies have reported that MCH improves memory by promoting memory retention. However, the precise molecular mechanisms by which MCH enhances memory impairment have yet to be fully elucidated. In this study, MCH was administered to the scopolamine-induced memory-impaired mice via the nasal cavity to examine the acute effects of MCH and Alzheimer's disease (AD) mouse models to evaluate the chronic effects of MCH. MCH improved memory impairment in both models and reduced soluble amyloid beta in the cerebral cortex of APP/PS1 transgenic mice. In vitro assays also showed that MCH inhibits amyloid beta-induced cytotoxicity. Furthermore, MCH increased long-term potentiation (LTP) in the hippocampus of wild-type and 5XFAD AD mouse model. To further elucidate the mechanisms of the chronic effect of MCH, the levels of phosphorylated CREB and GSK3ß, and the expression of BDNF, TrkB and PSD95 were examined in the cerebral cortex and hippocampus. Our findings indicate that MCH might have neuroprotective effects via downstream pathways associated with the enhancement of neuronal synapses and LTP. This suggests a therapeutic potential of MCH for the treatment of neurodegenerative diseases such as AD.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Hormônios Hipotalâmicos/administração & dosagem , Melaninas/administração & dosagem , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Hormônios Hipofisários/administração & dosagem , Administração Intranasal , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cavidade Nasal/efeitos dos fármacos , Cavidade Nasal/metabolismo , GravidezRESUMO
BACKGROUND: Despite the benefits from different options of therapy for breast cancer, resistance of the disease to these therapies is rising and a novel agent is needed. Erythro-austrobailignan-6 (EA6) exhibits anti-cancer activity. However, the detailed anti-tumor mechanisms by which EA6 inhibits 4T-1 and MCF-7 cell growth have not been well studied. PURPOSE: In this study, we investigated the anti-proliferative and anti-tumor properties of EA6 on breast carcinoma and its accompanying mechanisms. METHODS: The cytotoxic and apoptotic effect of EA6 were measured in breast cancer cell lines of 4T-1 and MCF-7. The role of EA6 on cell proliferation and migration was examined by immunoblotting. The anti-tumor activity of EA6 was assessed in mice inoculated with 4T-1 breast cancer cells. RESULTS: EA6 increased the number of Annexin V-positive apoptotic bodies and cleaved form of caspase-3 in a dose-dependent manner and phosphorylated JNK and p38 in both cells. Moreover, EA6 down-regulated cell cycle dependent proteins of CDK-4 and cyclin D1, and increased G0/G1 population in both cells. EA6-induced apoptosis is mediated by p38 MAPK and caspase-3 activation in both cells. EA6 significantly reduced HER2/EGFR/integrin ß3 expression and Src phosphorylation, which was dependent on p38 MAPK activation in 4T-1 and MCF-7 cells. Furthermore, we confirmed the down-regulation of topoisomerases by EA6 treatment, but the overall effects of EA6 on topoisomerase isotype were cell type specific. Finally, EA6 (20mg/kg/day) significantly reduced mammary tumor volume in 4T-1 bearing mice by down-regulating HER2/EGFR/integrin ß3 expression in tumor tissues. CONCLUSIONS: Our results offer a novel insight into the mechanism of EA6-induced apoptosis in breast cancer cells. We propose that EA6 treatment resulted in the activation of p38 MAPK and caspase-3, which eventually participated in regulating apoptosis in 4T-1 and MCF-7 cells.