Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 18(5)2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28489026

RESUMO

Organic peroxides and hydroperoxides are skin tumor promoters. Free radical derivatives from these compounds are presumed to be the prominent mediators of tumor promotion. However, the molecular targets of these species are unknown. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) are tumor suppressors that play important roles in cell growth, proliferation, and cell survival by negative regulation of phosphoinositol-3-kinase/protein kinase B signaling. PTEN is reversibly oxidized in various cells by exogenous and endogenous hydrogen peroxide. Oxidized PTEN is converted back to the reduced form by cellular reducing agents, predominantly by the thioredoxin (Trx) system. Here, the role of tert-butyl hydroperoxide (t-BHP) in redox regulation of PTEN was analyzed by using cell-based and in vitro assays. Exposure to t-BHP led to oxidation of recombinant PTEN. In contrast to H2O2, PTEN oxidation by t-BHP was irreversible in HeLa cells. However, oxidized PTEN was reduced by exogenous Trx system. Taken together, these results indicate that t-BHP induces PTEN oxidation and inhibits Trx system, which results in irreversible PTEN oxidation in HeLa cells. Collectively, these results suggest a novel mechanism of t-BHP in the promotion of tumorigenesis.


Assuntos
Peróxido de Hidrogênio/farmacologia , PTEN Fosfo-Hidrolase/química , terc-Butil Hidroperóxido/farmacologia , Células HeLa , Humanos , Oxirredução , PTEN Fosfo-Hidrolase/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Tiorredoxinas/metabolismo
2.
J Biol Chem ; 290(50): 29941-52, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26504085

RESUMO

Cytosolic valosin-containing protein (p97(VCP)) is translocated to the ER membrane by binding to selenoprotein S (SelS), which is an ER membrane protein, during endoplasmic reticulum-associated degradation (ERAD). Selenoprotein K (SelK) is another known p97(VCP)-binding selenoprotein, and the expression of both SelS and SelK is increased under ER stress. To understand the regulatory mechanisms of SelS, SelK, and p97(VCP) during ERAD, the interaction of the selenoproteins with p97(VCP) was investigated using N2a cells and HEK293 cells. Both SelS and SelK co-precipitated with p97(VCP). However, the association between SelS and SelK did not occur in the absence of p97(VCP). SelS had the ability to recruit p97(VCP) to the ER membrane but SelK did not. The interaction between SelK and p97(VCP) did not occur in SelS knockdown cells, whereas SelS interacted with p97(VCP) in the presence or absence of SelK. These results suggest that p97(VCP) is first translocated to the ER membrane via its interaction with SelS, and then SelK associates with the complex on the ER membrane. Therefore, the interaction between SelK and p97(VCP) is SelS-dependent, and the resulting ERAD complex (SelS-p97(VCP)-SelK) plays an important role in ERAD and ER stress.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Selenoproteínas/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Ligação Proteica , Proteína com Valosina
3.
Methods ; 77-78: 58-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25637034

RESUMO

PTEN is reversibly oxidized in various cells by exogenous hydrogen peroxide as well as by endogenous hydrogen peroxide generated when cells are stimulated with growth factors, cytokines and hormones. A gel mobility shift assay showed that oxidized PTEN migrated more rapidly than reduced PTEN on a non-reducing SDS-PAGE gel. Oxidized PTEN was reduced when treated with dithiothreitol. Supplementation of N-ethylmaleimide in the cell lysis buffer was critical for the apparent bands of oxidized and reduced PTEN. Formation of oxidized PTEN was abolished when the active site Cys(124) or nearby Cys(71) was replaced with Ser suggesting that Cys(124) and Cys(71) are involved in the formation of an intramolecular disulfide bond. These results show that the mobility shift assay is a convenient method to analyze the redox state of PTEN in cells.


Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , PTEN Fosfo-Hidrolase/análise , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Supressoras de Tumor/análise , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Animais , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Oxirredução , PTEN Fosfo-Hidrolase/genética , Coelhos , Proteínas Supressoras de Tumor/genética
4.
J Biol Chem ; 289(20): 13758-68, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24700463

RESUMO

During endoplasmic reticulum (ER)-associated degradation, p97(VCP) is recruited to the ER membrane through interactions with transmembrane proteins, such as selenoprotein S (SelS), selenoprotein K (SelK), hrd1, and gp78. SelS has a single-spanning transmembrane domain and protects cells from ER stress-induced apoptosis through interaction with p97(VCP). The cytosolic tail of SelS consists of a coiled-coil domain, a putative VCP-interacting motif (VIM), and an unpronounced glycine- and proline-rich secondary structure. To understand the regulatory mechanism of SelS during ER stress, we investigated the interaction of the protein with p97(VCP) using mouse neuroblastoma cells and human embryonic kidney 293 cells. The SelS expression level increased when ER stress was induced. In addition, the effect of ER stress was enhanced, and recruitment of p97(VCP) to the ER membrane was inhibited in SelS knockdown cells. The effect of SelS knockdown was rescued by ectopic expression of SelS U188C. p97(VCP) interacted with SelS U188C and was recruited to the ER membrane. The expression of SelS[ΔVIM], which is a VIM deletion mutant of SelS, also showed both a recovery effect and an interaction with p97(VCP) in cells. However, mutants in which the proline residue positions 178 or 183 of SelS were changed to alanine or were deleted did not interact with p97(VCP). The proline mutants did not rescue ER stress in SelS knockdown cells. These results suggest that both Pro(178) and Pro(183) of SelS play important roles in the translocation of p97(VCP) to the ER membrane and protect cells from ER stress.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Degradação Associada com o Retículo Endoplasmático , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Prolina/metabolismo , Selenoproteínas/química , Selenoproteínas/metabolismo , Sequência de Aminoácidos , Animais , Estresse do Retículo Endoplasmático , Inativação Gênica , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Selenoproteínas/deficiência , Selenoproteínas/genética , Proteína com Valosina
5.
BMC Complement Altern Med ; 15: 353, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26467986

RESUMO

BACKGROUND: Rice prolamin has been reported to possess antioxidative, anti-inflammatory and immune-promoting properties. This study is aimed to examine the protective effects of dietary rice prolamin extract (RPE) against dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD)-like skin lesions in mice. METHODS: BALB/c mice were fed diet supplemented with 0-0.1 % RPE for 6 weeks. For the last 2 weeks, 1 % or 0.2 % DNCB was applied repeatedly to the back skin of mice to induce AD-like lesions. Following AD induction, the severity of skin lesions was examined macroscopically and histologically. In addition, the serum levels of IgE, IgG1 and IgG2a were determined by ELISA, and the mRNA expression of IL-4 and IFN-γ in the skin was determined by real-time PCR. RESULTS: Dietary RPE suppressed the clinical symptoms of DNCB-induced dermatitis as well as its associated histopathological changes such as epidermal hyperplasia and infiltration of mast cells and eosinophils in the dermis. RPE treatment also suppressed the DNCB-induced increase in transepidermal water loss. Dietary RPE inhibited the DNCB-induced enhancement of serum IgE and IgG1 levels, whereas it increased the serum IgG2a level in DNCB-treated mice. In addition, dietary RPE upregulated the IFN-γ mRNA expression and downregulated the IL-4 mRNA expression in the skin of DNCB-treated mice. CONCLUSIONS: The above results suggest that dietary RPE exerts a protective effect against DNCB-induced AD in mice via upregulation of Th1 immunity and that RPE may be useful for the treatment of AD.


Assuntos
Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Oryza , Fitoterapia , Prolaminas/uso terapêutico , Pele/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Dermatite Atópica/sangue , Dermatite Atópica/patologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Prolaminas/farmacologia
6.
Antioxidants (Basel) ; 13(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38397797

RESUMO

Phosphatase and tensin homolog (PTEN) is a tumor suppressor due to its ability to regulate cell survival, growth, and proliferation by downregulating the PI3K/AKT signaling pathway. In addition, PTEN plays an essential role in other physiological events associated with cell growth demands, such as ischemia-reperfusion, nerve injury, and immune responsiveness. Therefore, recently, PTEN inhibition has emerged as a potential therapeutic intervention in these situations. Increasing evidence demonstrates that reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), are produced and required for the signaling in many important cellular processes under such physiological conditions. ROS have been shown to oxidize PTEN at the cysteine residue of its active site, consequently inhibiting its function. Herein, we provide an overview of studies that highlight the role of the oxidative inhibition of PTEN in physiological processes.

7.
Sci Rep ; 14(1): 15095, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956125

RESUMO

Nanogels offer hope for precise drug delivery, while addressing drug delivery hurdles is vital for effective prostate cancer (PCa) management. We developed an injectable elastin nanogels (ENG) for efficient drug delivery system to overcome castration-resistant prostate cancer (CRPC) by delivering Decursin, a small molecule inhibitor that blocks Wnt/ßcatenin pathways for PCa. The ENG exhibited favourable characteristics such as biocompatibility, flexibility, and low toxicity. In this study, size, shape, surface charge, chemical composition, thermal stability, and other properties of ENG were used to confirm the successful synthesis and incorporation of Decursin (DEC) into elastin nanogels (ENG) for prostate cancer therapy. In vitro studies demonstrated sustained release of DEC from the ENG over 120 h, with a pH-dependent release pattern. DU145 cell line induces moderate cytotoxicity of DEC-ENG indicates that nanomedicine has an impact on cell viability and helps strike a balance between therapeutics efficacy and safety while the EPR effect enables targeted drug delivery to prostate tumor sites compared to free DEC. Morphological analysis further supported the effectiveness of DEC-ENG in inducing cell death. Overall, these findings highlight the promising role of ENG-encapsulated decursin as a targeted drug delivery system for CRPC.


Assuntos
Elastina , Nanogéis , Neoplasias de Próstata Resistentes à Castração , Masculino , Elastina/química , Humanos , Linhagem Celular Tumoral , Nanogéis/química , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Sistemas de Liberação de Medicamentos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Benzopiranos , Butiratos
8.
Antioxidants (Basel) ; 13(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38671920

RESUMO

Phosphatase and tensin homolog (PTEN) is a negative regulator of the phosphoinositide 3-kinases/protein kinase B (PI3K/AKT) signaling pathway. Notably, its active site contains a cysteine residue that is susceptible to oxidation by hydrogen peroxide (H2O2). This oxidation inhibits the phosphatase function of PTEN, critically contributing to the activation of the PI3K/AKT pathway. Upon the stimulation of cell surface receptors, the activity of NADPH oxidase (NOX) generates a transient amount of H2O2, serving as a mediator in this pathway by oxidizing PTEN. The mechanism underlying this oxidation, occurring despite the presence of highly efficient and abundant cellular oxidant-protecting and reducing systems, continues to pose a perplexing conundrum. Here, we demonstrate that the presence of bicarbonate (HCO3-) promoted the rate of H2O2-mediated PTEN oxidation, probably through the formation of peroxymonocarbonate (HCO4-), and consequently potentiated the phosphorylation of AKT. Acetazolamide (ATZ), a carbonic anhydrase (CA) inhibitor, was shown to diminish the oxidation of PTEN. Thus, CA can also be considered as a modulator in this context. In essence, our findings consolidate the crucial role of HCO3- in the redox regulation of PTEN by H2O2, leading to the presumption that HCO4- is a signaling molecule during cellular physiological processes.

9.
Pharmacol Ther ; 252: 108560, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37952903

RESUMO

Biological responsiveness refers to the capacity of living organisms to adapt to changes in both their internal and external environments through physiological and behavioral mechanisms. One of the prominent aspects of aging is the decline in this responsiveness, which can lead to a deterioration in the processes required for maintenance, survival, and growth. The vital link between physiological responsiveness and the essential life processes lies within the signaling systems. To devise effective strategies for controlling the aging process, a comprehensive reevaluation of this connecting loop is imperative. This review aims to explore the impact of aging on signaling systems responsible for responsiveness and introduce a novel perspective on intervening in the aging process by restoring the compromised responsiveness. These innovative mechanistic approaches for modulating altered responsiveness hold the potential to illuminate the development of action plans aimed at controlling the aging process and treating age-related disorders.


Assuntos
Envelhecimento , Transdução de Sinais , Humanos , Envelhecimento/fisiologia
10.
Antioxidants (Basel) ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36670982

RESUMO

Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are becoming increasingly prevalent worldwide. Despite the different etiologies, their spectra and histological feature are similar, from simple steatosis to more advanced stages such as steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Studies including peroxiredoxin knockout models revealed that oxidative stress is crucial in these diseases, which present as consequences of redox imbalance. Protein tyrosine phosphatases (PTPs) are a superfamily of enzymes that are major targets of reactive oxygen species (ROS) because of an oxidation-susceptible nucleophilic cysteine in their active site. Herein, we review the oxidative inactivation of two tumor suppressor PTPs, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and T-cell protein tyrosine phosphatase (TCPTP), and their contribution to the pathogenicity of ALD and NAFLD, respectively. This review might provide a better understanding of the pathogenic mechanisms of these diseases and help develop new therapeutic strategies to treat fatty liver disease.

11.
Exp Cell Res ; 317(7): 1060-70, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21192925

RESUMO

Homeodomain-interacting protein kinase 2 (HIPK2) is a key regulator of various transcription factors including p53 and CtBP in the DNA damage signaling pathway. PML-nuclear body (NB) is required for HIPK2-mediated p53 phosphorylation at Ser46 and induction of apoptosis. Although PML-NB targeting of HIPK2 has been shown, much is not clear about the molecular mechanism of HIPK2 recruitment to PML-NBs. Here we show that HIPK2 colocalizes specifically with PML-I and PML-IV. Mutational analysis showed that HIPK2 recruitment to PML-IV-NBs is mediated by the SUMO-interaction motifs (SIMs) of both PML-IV and HIPK2. Wild-type HIPK2 associated with SUMO-conjugated PML-IV at a higher affinity than with un-conjugated PML-IV, while the association of a HIPK2 SIM mutant with SUMO-modified PML-IV was impaired. In colony formation assays, HIPK2 strongly suppressed cell proliferation, but HIPK2 SIM mutants did not. In addition, activation and phosphorylation of p53 at the Ser46 residue were impaired by HIPK2 SIM mutants. These results suggest that SIM-mediated HIPK2 targeting to PML-NBs is crucial for HIPK2-mediated p53 activation and induction of apoptosis.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína SUMO-1/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Apoptose/fisiologia , Proteínas de Transporte/genética , Linhagem Celular , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Fosforilação , Proteína da Leucemia Promielocítica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína SUMO-1/genética , Alinhamento de Sequência , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética
12.
ACS Sens ; 7(1): 131-141, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34936330

RESUMO

Methionine oxidation is involved in regulating the protein activity and often leads to protein malfunction. However, tools for quantitative analyses of protein-specific methionine oxidation are currently unavailable. In this work, we developed a biological sensor that quantifies oxidized methionine in the form of methionine-R-sulfoxide in target proteins. The biosensor "tpMetROG" consists of methionine sulfoxide reductase B (MsrB), circularly permuted yellow fluorescent protein (cpYFP), thioredoxin, and protein G. Protein G binds to the constant region of antibodies against target proteins, specifically capturing them. Then, MsrB reduces the oxidized methionine in these proteins, leading to cpYFP fluorescence changes. We assessed this biosensor for quantitative analysis of methionine-R-sulfoxide in various proteins, such as calmodulin, IDLO, LegP, Sacde, and actin. We further developed an immunosorbent assay using the biosensor to quantify methionine oxidation in specific proteins such as calmodulin in animal tissues. The biosensor-linked immunosorbent assay proves to be an indispensable tool for detecting methionine oxidation in a protein-specific manner. This is a versatile tool for studying the redox biology of methionine oxidation in proteins.


Assuntos
Técnicas Biossensoriais , Imunoadsorventes , Animais , Calmodulina/metabolismo , Metionina/metabolismo , Metionina Sulfóxido Redutases/metabolismo , Oxirredução
13.
Biochem Biophys Res Commun ; 407(1): 175-80, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21371429

RESUMO

Human PTEN (phosphatase and tensin homolog deleted on chromosome 10; a phosphatidylinositol 3-phosphatase) expressed in Saccharomyces cerevisiae was oxidized in a time- and H(2)O(2)-concentration-dependent manner. Oxidized hPTEN was reduced by cellular reductants as in human cells. The reduction rate of oxidized hPTEN was monitored in S. cerevisiae mutants in which the genes involved in redox homeostasis had been disrupted. Reduction of hPTEN was delayed in each of S. cerevisiae grx5Δ and ycp4Δ mutants. Expression of Grx5 and Ycp4 in each of the mutants rescued the reduction rate of oxidized hPTEN. Furthermore, an in vitro assay revealed that the human Grx5/GSH system efficiently catalyzed the reduction of oxidized hPTEN. These results suggest that the reduction of oxidized hPTEN is regulated by Grx5 and Ycp4.


Assuntos
Flavodoxina/metabolismo , Glutarredoxinas/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Glutarredoxinas/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Dados de Sequência Molecular , Oxirredução , PTEN Fosfo-Hidrolase/genética , Saccharomyces cerevisiae/genética
14.
Antioxidants (Basel) ; 10(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669370

RESUMO

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is known as a tumor suppressor gene that is frequently mutated in numerous human cancers and inherited syndromes. PTEN functions as a negative regulator of PI3K/Akt signaling pathway by dephosphorylating phosphatidylinositol (3, 4, 5)-trisphosphate (PIP3) to phosphatidylinositol (4, 5)-bisphosphate (PIP2), which leads to the inhibition of cell growth, proliferation, cell survival, and protein synthesis. PTEN contains a cysteine residue in the active site that can be oxidized by peroxides, forming an intramolecular disulfide bond between Cys124 and Cys71. Redox regulation of PTEN by reactive oxygen species (ROS) plays a crucial role in cellular signaling. Peroxiredoxins (Prxs) are a superfamily of peroxidase that catalyzes reduction of peroxides and maintains redox homeostasis. Mammalian Prxs have 6 isoforms (I-VI) and can scavenge cellular peroxides. It has been demonstrated that Prx I can preserve and promote the tumor-suppressive function of PTEN by preventing oxidation of PTEN under benign oxidative stress via direct interaction. Also, Prx II-deficient cells increased PTEN oxidation and insulin sensitivity. Furthermore, Prx III has been shown to protect PTEN from oxidation induced by 15s-HpETE and 12s-HpETE, these are potent inflammatory and pro-oxidant mediators. Understanding the tight connection between PTEN and Prxs is important for providing novel therapies. Herein, we summarized recent studies focusing on the relationship of Prxs and the redox regulation of PTEN.

15.
Free Radic Biol Med ; 162: 141-148, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249138

RESUMO

Hepatic steatosis and subsequent fatty liver disease are developed in response to alcohol consumption. Reactive oxygen species (ROS) are thought to play an important role in the alcoholic fatty liver disease (AFLD). However, the molecular targets of ROS and the underlying cellular mechanisms are unknown. Here, we investigate roles of peroxiredoxin III and redox regulation of phosphatase and tension homolog deleted on chromosome 10 (PTEN) in the alcoholic fatty liver. Alcohol-induced mitochondrial oxidative stress was found to contribute to reversible oxidation of PTEN, which results in Akt and MAPK hyperactivation with elevated levels of the lipogenesis regulators SREBP1c and PPARγ. Moreover, mitochondrial peroxiredoxin III was found to have antagonistic effects on lipogenesis via the redox regulation of PTEN by removing ROS, upon alcohol exposure. This study demonstrated that redox regulation of PTEN and peroxiredoxin III play crucial roles in the development of AFLD.


Assuntos
Fígado Gorduroso Alcoólico , Fígado Gorduroso Alcoólico/genética , Fígado Gorduroso Alcoólico/metabolismo , Humanos , Lipogênese , Fígado/metabolismo , Oxirredução , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Peroxirredoxina III/metabolismo
16.
Redox Biol ; 34: 101553, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32413744

RESUMO

Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) is a potent tumor suppressor and often dysregulated in cancers. Cellular PTEN activity is restrained by the oxidation of active-site cysteine by reactive oxygen species (ROS). Recovery of its enzymatic activity predominantly depends on the availability of cellular thioredoxin (Trx) and peroxiredoxins (Prx), both are important players in cell signaling. Trx and Prx undergo redox-dependent conformational changes through the oxidation of cysteine residues at their active sites. Their dynamics are essential for protein functionality and regulation. In this review, we summarized the recent advances regarding the redox regulation of PTEN, with a specific focus on our current state-of-the-art understanding of the redox regulation of PTEN. We also proposed a tight association of the redox regulation of PTEN with Trx dimerization and Prx hyperoxidation, providing guidance for the identification of novel therapeutic targets.


Assuntos
Peroxirredoxinas , Tiorredoxinas , Cisteína , Oxirredução , PTEN Fosfo-Hidrolase , Peroxirredoxinas/metabolismo , Espécies Reativas de Oxigênio , Transdução de Sinais , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
17.
Antioxidants (Basel) ; 9(5)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380763

RESUMO

Selenium is a vital trace element present as selenocysteine (Sec) in proteins that are, thus, known as selenoproteins. Humans have 25 selenoproteins, most of which are functionally characterized as oxidoreductases, where the Sec residue plays a catalytic role in redox regulation and antioxidant activity. Glutathione peroxidase plays a pivotal role in scavenging and inactivating hydrogen and lipid peroxides, whereas thioredoxin reductase reduces oxidized thioredoxins as well as non-disulfide substrates, such as lipid hydroperoxides and hydrogen peroxide. Selenoprotein R protects the cell against oxidative damage by reducing methionine-R-sulfoxide back to methionine. Selenoprotein O regulates redox homeostasis with catalytic activity of protein AMPylation. Moreover, endoplasmic reticulum (ER) membrane selenoproteins (SelI, K, N, S, and Sel15) are involved in ER membrane stress regulation. Selenoproteins containing the CXXU motif (SelH, M, T, V, and W) are putative oxidoreductases that participate in various cellular processes depending on redox regulation. Herein, we review the recent studies on the role of selenoproteins in redox regulation and their physiological functions in humans, as well as their role in various diseases.

18.
Biochem J ; 412(2): 331-8, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18307411

RESUMO

The tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10; a phosphatidylinositol 3-phosphatase) is a multifunctional protein deregulated in many types of cancer. It is suggested that a number of proteins that relate with PTEN functionally or physically have not yet been found. In order to search for PTEN-interacting proteins that might be crucial in the regulation of PTEN, we exploited a proteomics-based approach. PTEN-expressing NIH 3T3 cell lysates were used in affinity chromatography and then analysed by LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem MS). A total of 93 proteins were identified. Among the proteins identified, we concentrated on the E3 ubiquitin-protein ligase Nedd4 (neural-precursor-cell-expressed, developmentally down-regulated gene 4), and performed subsequent validation experiments using HeLa cells. Nedd4 inhibited PTEN-induced apoptotic cell death and, conversely, the Nedd4 level was down-regulated by PTEN. The down-regulation effect was diminished by a mutation (C124S) in the catalytic site of PTEN. Nedd4 expression was also decreased by a PI3K (phosphoinositide 3-kinase) inhibitor, LY294002, suggesting that the regulation is dependent on the phosphatase-kinase activity of the PTEN-PI3K/Akt pathway. Semi-quantitative real-time PCR analysis revealed that Nedd4 was transcriptionally regulated by PTEN. Thus our results have important implications regarding the roles of PTEN upon the E3 ubquitin ligase Nedd4 as a negative feedback regulator as well as a substrate.


Assuntos
Regulação da Expressão Gênica , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose/fisiologia , Caspases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Ubiquitina-Proteína Ligases Nedd4 , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteoma/análise , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/fisiologia , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
19.
Oxid Med Cell Longev ; 2019: 2828493, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636803

RESUMO

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase that coordinates various cellular processes. Its activity is regulated by the reversible oxidation of an active-site cysteine residue by H2O2 and thioredoxin. However, the potential role of lipid peroxides in the redox regulation of PTEN remains obscure. To evaluate this, 15-hydroperoxy-eicosatetraenoic acid (15s-HpETE), a lipid peroxide, was employed to investigate its effect on PTEN using molecular and cellular-based assays. Exposure to 15s-HpETE resulted in the oxidation of recombinant PTEN. Reversible oxidation of PTEN was also observed in mouse embryonic fibroblast (MEF) cells treated with a 15s-HpETE and Lipofectamine mixture. The oxidative dimerization of thioredoxin was found simultaneously. In addition, the absence of peroxiredoxin III aggravated 15s-HpETE-induced PTEN oxidation in MEF cells. Our study provides novel insight into the mechanism linking lipid peroxidation to the etiology of tumorigenesis.


Assuntos
Leucotrienos/uso terapêutico , Peróxidos Lipídicos/uso terapêutico , PTEN Fosfo-Hidrolase/efeitos dos fármacos , Peroxirredoxina III/uso terapêutico , Animais , Humanos , Leucotrienos/farmacologia , Peróxidos Lipídicos/farmacologia , Camundongos , Oxirredução , Peroxirredoxina III/farmacologia , Transfecção
20.
Mol Biol Cell ; 16(1): 348-57, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15537704

RESUMO

Phosphoinositide-3 kinase (PI-3 kinase) and its downstream signaling molecules PDK-1 and Akt were analyzed in SK-N-SH and SK-N-BE(2) human neuroblastoma cell lines. When cells were stimulated with insulin, PI-3 kinase was activated in both cell lines, whereas the translocation of PDK-1 to the membrane fraction and phosphorylated Akt were observed only in SK-N-SH cells. Analyses of the insulin-mediated reactive oxygen species (ROS) generation and Phosphatase and Tensin homolog (PTEN) oxidation indicate that PTEN oxidation occurred in SK-N-SH cells, which can produce ROS, but not in SK-N-BE(2) cells, which cannot increase ROS in response to insulin stimulation. When SK-N-SH cells were pretreated with the NADPH oxidase inhibitor diphenyleneiodonium chloride before insulin stimulation, insulin-mediated translocation of PDK-1 to the membrane fraction and phosphorylation of Akt were remarkably reduced, whereas PI-3 kinase activity was not changed significantly. These results indicate that not only PI-3 kinase activation but also inhibition of PTEN by ROS is needed to increase cellular level of phosphatidylinositol 3,4,5-trisphosphate for recruiting downstream signaling molecules such as PDK-1 and Akt in insulin-mediated signaling. Moreover, the ROS generated by insulin stimulation mainly contributes to the inactivation of PTEN and not to the activation of PI-3 kinase in the PI-3 kinase/Akt pathway.


Assuntos
Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Immunoblotting , Imunoprecipitação , NADPH Oxidases/metabolismo , Oniocompostos/farmacologia , Oxigênio/metabolismo , PTEN Fosfo-Hidrolase , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa