Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955523

RESUMO

Radiation-induced cutaneous ulcers are a challenging medical problem for patients receiving radiation therapy. The inhibition of cell senescence has been suggested as a prospective strategy to prevent radiation ulcers. However, there is no effective treatment for senescent cells in radiation ulcers. In this study, we investigated whether zileuton alleviated radiation-induced cutaneous ulcer by focusing on cell senescence. We demonstrate increased cell senescence and senescence-associated secretory phenotype (SASP) in irradiated dermal fibroblasts and skin tissue. The SASP secreted from senescent cells induces senescence in adjacent cells. In addition, 5-lipoxygenase (5-LO) expression increased in irradiated dermal fibroblasts and skin tissue, and SASP and cell senescence were regulated by 5-LO through p38 phosphorylation. Finally, the inhibition of 5-LO following treatment with zileuton inhibited SASP and mitigated radiation ulcers in animal models. Our results demonstrate that inhibition of SASP from senescent cells by zileuton can effectively mitigate radiation-induced cutaneous ulcers, indicating that inhibition of 5-LO might be a viable strategy for patients with this condition.


Assuntos
Fibroblastos , Úlcera , Animais , Senescência Celular , Fibroblastos/metabolismo , Hidroxiureia/análogos & derivados , Fenótipo , Roedores , Fenótipo Secretor Associado à Senescência , Úlcera/metabolismo
2.
Nat Chem Biol ; 15(4): 377-383, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833778

RESUMO

Potassium (K) channels exhibit exquisite selectivity for conduction of K+ ions over other cations, particularly Na+. High-resolution structures reveal an archetypal selectivity filter (SF) conformation in which dehydrated K+ ions, but not Na+ ions, are perfectly coordinated. Using single-molecule FRET (smFRET), we show that the SF-forming loop (SF-loop) in KirBac1.1 transitions between constrained and dilated conformations as a function of ion concentration. The constrained conformation, essential for selective K+ permeability, is stabilized by K+ but not Na+ ions. Mutations that render channels nonselective result in dilated and dynamically unstable conformations, independent of the permeant ion. Further, while wild-type KirBac1.1 channels are K+ selective in physiological conditions, Na+ permeates in the absence of K+. Moreover, whereas K+ gradients preferentially support 86Rb+ fluxes, Na+ gradients preferentially support 22Na+ fluxes. This suggests differential ion selectivity in constrained versus dilated states, potentially providing a structural basis for this anomalous mole fraction effect.


Assuntos
Canais de Potássio/metabolismo , Canais de Potássio/fisiologia , Animais , Sítios de Ligação , Permeabilidade da Membrana Celular/fisiologia , Cristalografia por Raios X/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Ativação do Canal Iônico , Modelos Moleculares , Potássio/metabolismo , Potássio/fisiologia , Conformação Proteica , Imagem Individual de Molécula , Sódio/metabolismo , Relação Estrutura-Atividade
3.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673196

RESUMO

Intestinal injury is observed in cancer patients after radiotherapy and in individuals exposed to radiation after a nuclear accident. Radiation disrupts normal vascular homeostasis in the gastrointestinal system by inducing endothelial damage and senescence. Despite advances in medical technology, the toxicity of radiation to healthy tissue remains an issue. To address this issue, we investigated the effect of atorvastatin, a commonly prescribed hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor of cholesterol synthesis, on radiation-induced enteropathy and inflammatory responses. We selected atorvastatin based on its pleiotropic anti-fibrotic and anti-inflammatory effects. We found that atorvastatin mitigated radiation-induced endothelial damage by regulating plasminogen activator inhibitor-1 (PAI-1) using human umbilical vein endothelial cells (HUVECs) and mouse model. PAI-1 secreted by HUVECs contributed to endothelial dysfunction and trans-endothelial monocyte migration after radiation exposure. We observed that PAI-1 production and secretion was inhibited by atorvastatin in irradiated HUVECs and radiation-induced enteropathy mouse model. More specifically, atorvastatin inhibited PAI-1 production following radiation through the JNK/c-Jun signaling pathway. Together, our findings suggest that atorvastatin alleviates radiation-induced enteropathy and supports the investigation of atorvastatin as a radio-mitigator in patients receiving radiotherapy.


Assuntos
Atorvastatina/farmacologia , Raios gama/efeitos adversos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Enteropatias/metabolismo , Monócitos/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Lesões Experimentais por Radiação/metabolismo , Migração Transendotelial e Transepitelial , Animais , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Enteropatias/patologia , Camundongos , Monócitos/patologia , Lesões Experimentais por Radiação/patologia , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Migração Transendotelial e Transepitelial/efeitos da radiação
4.
Exp Dermatol ; 29(2): 158-167, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31560791

RESUMO

Delayed wound healing after radiation exposure can cause serious cutaneous damage, and its treatment is a major clinical challenge. Although mesenchymal stem cells (MSCs) have emerged as a promising therapeutic agent in regenerative medicine, they alone do not produce satisfactory effects in a combined radiation and wound injury (CRWI) model. Here, we investigated the therapeutic effect of combined umbilical cord blood-derived (UCB)-MSCs and platelet-rich plasma (PRP) treatment on wound healing in a CRWI mouse model. First, we assessed the release of cytokines from UCB-MSCs cultured with PRP and observed changes in the expression of angiogenic factors. The angiogenic paracrine factors from UCB-MSCs cultured with PRP were assessed in human umbilical vein endothelial cells (HUVECs). To assess therapeutic efficacy, UCB-MSCs and PRP were topically implanted into a CRWT mouse model. Vascular endothelial growth factor (VEGF), a pro-angiogenic growth factor, urokinase-type plasminogen activator and contributor to VEGF-induced signalling were more highly expressed in conditioned media of UCB-MSCs cultured with PRP than in that of UCB-MSCs alone. Furthermore, conditioned media of UCB-MSCs cultured with PRP increased the formation of tube-like structures in HUVECs. Co-treatment of UCB-MSCs and PRP in a CRWI mouse model increased the wound closure rate and angiogenesis compared with an untreated irradiated group. Moreover, increased expression of VEGF and CD31 were observed in the wound tissue of co-treated mice compared with untreated irradiated mice. PRP stimulates the release of angiogenic factors from UCB-MSCs, and combined therapy of UCB-MSCs and PRP improves regeneration efficacy by enhancing angiogenesis in a CRWI model.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Neovascularização Fisiológica , Comunicação Parácrina/fisiologia , Plasma Rico em Plaquetas , Cicatrização/fisiologia , Animais , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Endotelina-1/genética , Endotelina-1/metabolismo , Sangue Fetal/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos da radiação
5.
Biotechnol Bioeng ; 117(12): 3639-3650, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32833232

RESUMO

Intestinal organoids have recently emerged as an in vitro model relevant to the gut system owing to their recapitulation of the native intestinal epithelium with crypt-villus architecture. However, it is unclear whether intestinal organoids reflect the physiology of the in vivo stress response. Here, we systemically investigated the radiation response in organoids and animal models using mesenchymal stem cell-conditioned medium (MSC-CM), which contains secreted paracrine factors. Irradiated organoids exhibited sequential induction of viability loss and regrowth after irradiation (within 12 days), similar to the response of the native intestinal epithelium. Notably, treatment with MSC-CM facilitated the reproliferation of intestinal stem cells (ISCs) and restoration of damaged crypt-villus structures in both models. Furthermore, Wnt/Notch signaling pathways were commonly upregulated by MSC-CM, but not radiation, and pharmacologically selective inhibition of Wnt or Notch signaling attenuated the enhanced recovery of irradiated organoids, with increases in ISCs, following MSC-CM treatment. Interestingly, the expression of Wnt4, Wnt7a, and active ß-catenin was increased, but not notch family members, in MSC-CM-treated organoid after irradiation. Treatment of recombinant mouse Wnt4 and Wnt7a after irradiation improved to some extent intestinal epithelial regeneration both in vitro and in vivo. Overall, these results suggested that intestinal organoids recapitulated the physiological stress response of the intestinal epithelium in vivo. Thus, our findings provided important insights into the physiology of intestinal organoids and may contribute to the development of strategies to enhance the functional maturation of engineered organoids.


Assuntos
Mucosa Intestinal/metabolismo , Células-Tronco Mesenquimais/metabolismo , Organoides/metabolismo , Regeneração/efeitos dos fármacos , Raios X/efeitos adversos , Animais , Meios de Cultivo Condicionados , Humanos , Masculino , Camundongos , Regeneração/efeitos da radiação
6.
Int J Mol Sci ; 21(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164317

RESUMO

Although radiotherapy plays a crucial in the management of pelvic tumors, its toxicity on surrounding healthy tissues such as the small intestine, colon, and rectum is one of the major limitations associated with its use. In particular, proctitis is a major clinical complication of pelvic radiotherapy. Recent evidence suggests that endothelial injury significantly affects the initiation of radiation-induced inflammation. The damaged endothelial cells accelerate immune cell recruitment by activating the expression of endothelial adhesive molecules, which participate in the development of tissue damage. Pravastatin, a cholesterol lowering drug, exerts persistent anti-inflammatory and anti-thrombotic effects on irradiated endothelial cells and inhibits the interaction of leukocytes and damaged endothelial cells. Here, we aimed to investigate the effects of pravastatin on radiation-induced endothelial damage in human umbilical vein endothelial cell and a murine proctitis model. Pravastatin attenuated epithelial damage and inflammatory response in irradiated colorectal lesions. In particular, pravastatin improved radiation-induced endothelial damage by regulating thrombomodulin (TM) expression. In addition, exogenous TM inhibited leukocyte adhesion to the irradiated endothelial cells. Thus, pravastatin can inhibit endothelial damage by inducing TM, thereby alleviating radiation proctitis. Therefore, we suggest that pharmacological modulation of endothelial TM may limit intestinal inflammation after irradiation.


Assuntos
Células Endoteliais/citologia , Pravastatina/administração & dosagem , Proctite/tratamento farmacológico , Trombomodulina/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Camundongos , Pravastatina/farmacologia , Proctite/etiologia , Células THP-1
7.
J Biol Chem ; 293(48): 18779-18788, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30333230

RESUMO

Potassium channels that exhibit the property of inward rectification (Kir channels) are present in most cells. Cloning of the first Kir channel genes 25 years ago led to recognition that inward rectification is a consequence of voltage-dependent block by cytoplasmic polyamines, which are also ubiquitously present in animal cells. Upon cellular depolarization, these polycationic metabolites enter the Kir channel pore from the intracellular side, blocking the movement of K+ ions through the channel. As a consequence, high K+ conductance at rest can provide very stable negative resting potentials, but polyamine-mediated blockade at depolarized potentials ensures, for instance, the long plateau phase of the cardiac action potential, an essential feature for a stable cardiac rhythm. Despite much investigation of the polyamine block, where exactly polyamines get to within the Kir channel pore and how the steep voltage dependence arises remain unclear. This Minireview will summarize current understanding of the relevance and molecular mechanisms of polyamine block and offer some ideas to try to help resolve the fundamental issue of the voltage dependence of polyamine block.


Assuntos
Poliaminas/metabolismo , Canais de Potássio/metabolismo , Transporte de Íons , Potássio/metabolismo , Canais de Potássio/química , Canais de Potássio/genética , Conformação Proteica
8.
Cancer Sci ; 110(7): 2226-2236, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31102316

RESUMO

Hyaluronic acid synthase 2 (HAS2) is suggested to play a critical role in malignancy and is abnormally expressed in many carcinomas. However, its role in colorectal cancer (CRC) malignancy and specific signaling mechanisms remain obscure. Here, we report that HAS2 was markedly increased in both CRC tissue and malignant CRC cell lines. Depletion of HAS2 in HCT116 and DLD1 cells, which express high levels of HAS2, critically increased sensitivity of radiation/oxaliplatin-mediated apoptotic cell death. Moreover, downregulation of HAS2 suppressed migration, invasion and metastasis in nude mice. Conversely, ectopic overexpression of HAS2 in SW480 cells, which express low levels of HAS2, showed the opposite effect. Notably, HAS2 loss- and gain-of-function experiments revealed that it regulates CRC malignancy through TGF-ß expression and SMAD2/Snail downstream components. Collectively, our findings suggest that HAS2 contributes to malignant phenotypes of CRC, at least partly, through activation of the TGF-ß signaling pathway, and shed light on the novel mechanisms behind the constitutive activation of HAS2 signaling in CRC, thereby highlighting its potential as a therapeutic target.


Assuntos
Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Hialuronan Sintases/metabolismo , Tolerância a Radiação , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Hialuronan Sintases/genética , Camundongos , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Análise Serial de Tecidos , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
9.
Cancer Sci ; 110(9): 2834-2845, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31278880

RESUMO

Recurrence and chemoresistance in colorectal cancer remain important issues for patients treated with conventional therapeutics. Metformin and phenformin, previously used in the treatment of diabetes, have been shown to have anticancer effects in various cancers, including breast, lung and prostate cancers. However, their molecular mechanisms are still unclear. In this study, we examined the effects of these drugs in chemoresistant rectal cancer cell lines. We found that SW837 and SW1463 rectal cancer cells were more resistant to ionizing radiation and 5-fluorouracil than HCT116 and LS513 colon cancer cells. In addition, metformin and phenformin increased the sensitivity of these cell lines by inhibiting cell proliferation, suppressing clonogenic ability and increasing apoptotic cell death in rectal cancer cells. Signal transducer and activator of transcription 3 and transforming growth factor-ß/Smad signaling pathways were more activated in rectal cancer cells, and inhibition of signal transducer and activator of transcription 3 expression using an inhibitor or siRNA sensitized rectal cancer cells to chemoresistant by inhibition of the expression of antiapoptotic proteins, such as X-linked inhibitor of apoptosis, survivin and cellular inhibitor of apoptosis protein 1. Moreover, metformin and phenformin inhibited cell migration and invasion by suppression of transforming growth factor ß receptor 2-mediated Snail and Twist expression in rectal cancer cells. Therefore, metformin and phenformin may represent a novel strategy for the treatment of chemoresistant rectal cancer by targeting signal transducer and activator of transcription 3 and transforming growth factor-ß/Smad signaling.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metformina/farmacologia , Fenformin/farmacologia , Neoplasias Retais/terapia , Transdução de Sinais/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Quimiorradioterapia/métodos , Colo/patologia , Neoplasias do Colo/patologia , Neoplasias do Colo/terapia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos da radiação , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Masculino , Metformina/uso terapêutico , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia , Fenformin/uso terapêutico , Neoplasias Retais/patologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos da radiação , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Transl Med ; 17(1): 295, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462256

RESUMO

BACKGROUND: The skin is impacted by every form of external radiation therapy. However, effective therapeutic options for severe, acute radiation-induced skin reactions are limited. Although platelet-rich plasma (PRP) is known to improve cutaneous wound healing, its effects in the context of high-dose irradiation are still poorly understood. METHODS: We investigated the regenerative functions of PRP by subjecting the dorsal skin of mice to local irradiation (40 Gy) and exposing HaCaT cells to gamma rays (5 Gy). The cutaneous benefits of PRP were gauged by wound size, histologic features, immunostains, western blot, and transepithelial water loss (TEWL). To assess the molecular effects of PRP on keratinocytes of healing radiation-induced wounds, we evaluated AKT signaling. RESULTS: Heightened expression of keratin 14 (K14) was documented in irradiated HaCaT cells and skin tissue, although the healing capacity of injured HaCaT cells declined. By applying PRP, this capacity was restored via augmented AKT signaling. In our mouse model, PRP use achieved the following: (1) healing of desquamated skin, acutely injured by radiation; (2) activated AKT signaling, improving migration and proliferation of K14 cells; (3) greater expression of involucrin in keratin 10 cells and sebaceous glands; and (4) reduced TEWL, strengthening the cutaneous barrier function. CONCLUSIONS: Our findings indicate that PRP enhances the functions of K14 cells via AKT signaling, accelerating the regeneration of irradiated skin. These wound-healing benefits may have merit in a clinical setting.


Assuntos
Plasma Rico em Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lesões por Radiação/complicações , Transdução de Sinais , Pele/lesões , Cicatrização , Animais , Linhagem Celular , Proliferação de Células/efeitos da radiação , Modelos Animais de Doenças , Humanos , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Queratinas/metabolismo , Camundongos , Transdução de Sinais/efeitos da radiação , Pele/patologia , Pele/efeitos da radiação , Cicatrização/efeitos da radiação , Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa