Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612783

RESUMO

Although the pathogenesis of solar lentigo (SL) involves chronic ultraviolet (UV) exposure, cellular senescence, and upregulated melanogenesis, underlying molecular-level mechanisms associated with SL remain unclear. The aim of this study was to investigate the gene regulatory mechanisms intimately linked to inflammation in SL. Skin samples from patients with SL with or without histological inflammatory features were obtained. RNA-seq data from the samples were analyzed via multiple analysis approaches, including exploration of core inflammatory gene alterations, identifying functional pathways at both transcription and protein levels, comparison of inflammatory module (gene clusters) activation levels, and analyzing correlations between modules. These analyses disclosed specific core genes implicated in oxidative stress, especially the upregulation of nuclear factor kappa B in the inflammatory SLs, while genes associated with protective mechanisms, such as SLC6A9, were highly expressed in the non-inflammatory SLs. For inflammatory modules, Extracellular Immunity and Mitochondrial Innate Immunity were exclusively upregulated in the inflammatory SL. Analysis of protein-protein interactions revealed the significance of CXCR3 upregulation in the pathogenesis of inflammatory SL. In conclusion, the upregulation of stress response-associated genes and inflammatory pathways in response to UV-induced oxidative stress implies their involvement in the pathogenesis of inflammatory SL.


Assuntos
Lentigo , Família Multigênica , Humanos , Inflamação/genética , Senescência Celular , Imunidade Inata , Lentigo/genética
2.
Food Sci Biotechnol ; 33(9): 2255-2260, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39130657

RESUMO

Oligosaccharides have been widely used as prebiotics in the food industry, however their properties have been examined in vitro, without considering hydrolysis in the human digestive tract, especially in the small intestine. Here, we hypothesized that the prebiotic effects and utilization efficiency of ingested oligosaccharides would be altered in the colon, as their structures are partially hydrolyzed during digestion. Different types of oligosaccharides were partially degraded during simulated digestion, and digestible monosaccharides were released from the initial substrates. The growth of some probiotic strains responded to the presence of digestible/absorbable mono- and disaccharides (components of the prebiotic oligosaccharides), but not to that of the oligosaccharides themselves. These findings regarding oligosaccharide degradation in the gastrointestinal tract can be used to achieve greater experimental accuracy when examining the effects of prebiotics on gut flora via in vitro studies (e.g., on fecal fermentation or microbial growth rates). Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01474-z.

3.
Antioxidants (Basel) ; 12(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36829842

RESUMO

Oxylipins are important biological molecules with diverse roles in human and plants such as pro-/anti-inflammatory, antimicrobial, and regulatory activity. Although there is an increasing number of plant-derived oxylipins, most of their physiological roles in humans remain unclear. Here, we describe the isolation, identification, and biological activities of four new oxylipins, chaenomesters A-D (1-4), along with a known compound (5), obtained from Chaenomeles sinensis twigs. Their chemical structures were determined by spectroscopic (i.e., NMR) and spectrometric (i.e., HRMS) data analysis including 1H NMR-based empirical rules and homonuclear-decoupled 1H NMR experiments. Chaenomester D (4), an omega-3 oxylipin, showed a potent inhibitory effect on nitric oxide (NO) production in lipopolysaccharide (LPS)-activated BV-2 cells (NO production, 8.46 ± 0.68 µM), neurotrophic activity in C6 cells through the induction of the secretion of nerve growth factor (NGF, 157.7 ± 2.4%), and cytotoxicity in A549 human cancer cell lines (IC50 = 27.4 µM).

4.
Genes (Basel) ; 14(12)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38136985

RESUMO

Myopia is a substantial global public health concern primarily linked to the elongation of the axial length of the eyeball. While numerous animal models have been employed to investigate myopia, the specific contributions of genetic factors and the intricate signaling pathways involved remain incompletely understood. In this study, we conducted RNA-seq analysis to explore genes and pathways in two distinct myopia-inducing mouse models: form-deprivation myopia (FDM) and lens-induced myopia (LIM). Comparative analysis with a control group revealed significant differential expression of 2362 genes in FDM and 503 genes in LIM. Gene Set Enrichment Analysis (GSEA) identified a common immune-associated pathway between LIM and FDM, with LIM exhibiting more extensive interactions. Notably, downregulation was observed in OxPhos complex III of FDM and complex IV of LIM. Subunit A of complex I was downregulated in LIM but upregulated in FDM. Additionally, complex V was upregulated in LIM but downregulated in FDM. These findings suggest a connection between alterations in energy metabolism and immune cell activation, shedding light on a novel avenue for understanding myopia's pathophysiology. Our research underscores the necessity for a comprehensive approach to comprehending myopia development, which integrates insights from energy metabolism, oxidative stress, and immune response pathways.


Assuntos
Miopia , Animais , Camundongos , Miopia/genética , Olho , Modelos Animais de Doenças , Metabolismo Energético/genética , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa