Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675667

RESUMO

The process of lipid crystallization influences the characteristics of lipid. By changing the chemical composition of the lipid system, the crystallization behavior could be controlled. This review elucidates the internal factors affecting lipid crystallization, including triacylglycerol (TAG) structure, TAG composition, and minor components. The influence of these factors on the TAG crystal polymorphic form, nanostructure, microstructure, and physical properties is discussed. The interplay of these factors collectively influences crystallization across various scales. Variations in fatty acid chain length, double bonds, and branching, along with their arrangement on the glycerol backbone, dictate molecular interactions within and between TAG molecules. High-melting-point TAG dominates crystallization, while liquid oil hinders the process but facilitates polymorphic transitions. Unique molecular interactions arise from specific TAG combinations, yielding molecular compounds with distinctive properties. Nanoscale crystallization is significantly impacted by liquid oil and minor components. The interaction between the TAG and minor components determines the influence of minor components on the crystallization process. In addition, future perspectives on better design and control of lipid crystallization are also presented.


Assuntos
Cristalização , Triglicerídeos , Triglicerídeos/química , Lipídeos/química , Ácidos Graxos/química
2.
J Sci Food Agric ; 104(7): 3958-3970, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38284502

RESUMO

BACKGROUND: As a by-product of the palm oil industry, palm stearin is often overlooked despite having several beneficial properties, such as excellent stability, which is critically essential to meet the demand of the global food trend in producing safer processed food. Specifically, deep frying of food is often associated with the production of toxic compounds that could potentially migrate into the food system when oils are degraded under continuous heating. The incorporation of palm stearin is regarded as a cost-effective and efficient method to modify the fatty acid composition of oils, enhance the frying qualities and lower the degradation rate. RESULTS: This study blended 5% and 10% palm stearin into palm oil to investigate the deep-frying performance and impact on food quality. Increasing the palm stearin content improved the frying oil's oxidative and hydrolytic stability, evidenced by reduction of total polar material, free fatty acid and total oxidation value. Addition of palm stearin increased the slip melting point which improved the oil's oxidative stability but no significant increase in oil content of instant noodles was observed. Scanning electron microscopy and fluorescence microscopy showed the formation of larger pores in the noodle structure that facilitated oil retention. CONCLUSION: Blending palm stearin into frying oil enhanced the frying stability and minimally affected the oil uptake in instant noodles. This article presents the viability of blending palm stearin into frying oils to develop longer-lasting frying oils. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ácidos Graxos , Óleos de Plantas , Óleo de Palmeira/química , Óleos de Plantas/química , Ácidos Graxos/química , Ácidos Graxos não Esterificados , Oxirredução
3.
Crit Rev Food Sci Nutr ; 63(21): 5231-5246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34913758

RESUMO

Insect-based food or ingredients have received tremendous attention worldwide because of their potential to ensure food and nutrition security, mitigating the reliance on land-dependent agricultural products. Indeed, insect-farming has low environmental impacts with reduced land, water and energy input. More importantly, insects are rich in high quality proteins and fats. They are also excellent sources of minerals, vitamins and bioactive compounds. Insect-based lipids are intriguing because they may contain high levels of unsaturated fatty acids particularly linoleic and α-linolenic acids. Besides, the insect-based lipids also show a considerable amount of bioactive components such as tocols, sterols and carotenoids. However, their fatty acid compositions and the nutritional values may vary depending on species, feed composition, developmental stage, geographical locations, and extraction techniques. Therefore, the present article aims to provide a comprehensive review on the fatty acid composition, the minor bioactive constituents and the physicochemical properties of fats and oils derived from insects of different orders (Coleoptera, Lepidoptera, Hymenoptera, Orthoptera, Hemiptera and Diptera). The various parameters affecting the nutritional compositions of the insect-based lipids will also be highlighted. These information will definitely provide a detailed insight on the potential applications of these fats in various food systems based on their unique properties.


Assuntos
Dípteros , Ácidos Graxos , Animais , Ácidos Graxos/metabolismo , Insetos , Ácidos Graxos Insaturados/metabolismo , Gorduras , Óleos
4.
J Food Sci Technol ; 60(4): 1222-1236, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36936117

RESUMO

Oil has extensively been extracted from oil-bearing crops and traded globally as a major food commodity. There is always a huge demand from the fats and oils industries to increase oil yield because of profitability benefits. If extraction is conducted under mild operating conditions to preserve and improve the oil quality, then it would be an added value. Ultrasound that works on the cavitational action helps to fulfil the gap. Ultrasound is gaining tremendous interest as an alternative to replace the current conventional extractions approach because of its multiple benefits. Cavitation generated by ultrasound eases the release of oil from cell matrices, thereby allowing the extraction to be carried out under mild processing conditions. The effect enhances the oil yield whilst preserving the quality of the oil. In ultrasound, green solvents can be used to replace toxic organic solvents. Recent up-to-date approaches utilised a combination of ultrasound with enzyme, microwave and supercritical technology to further enhance the oil extraction. This review highlights a comprehensive work of the impact of ultrasound and ultrasound in combination with other technologies on oil extraction, which emphasises the extraction yield and physicochemical properties of the oil, such as fatty acid composition, oxidative stability with the retention of the lipophilic phytochemicals and iodine, saponification values and colour parameters. Understanding of ultrasonication techniques for oil extraction served to be essential and useful information for the fats and oils scientists from academia and industries to explore the possibility of employing a sustainable and mild approaches for extracting oil from various crops.

5.
Crit Rev Food Sci Nutr ; 62(15): 4169-4185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33480262

RESUMO

Structured lipid is a type of modified form of lipid that is "fabricated" with the purpose to improve the nutritional and functional properties of conventional fats and oils derived from animal and plant sources. Such healthier choice of lipid received escalating attention from the public for its capability to manage the rising prevalence of metabolic syndrome. Of which, medium-chain triacylglycerol (MCT) and medium-and long-chain triacylglycerol (MLCT) are the few examples of the "new generation" custom-made healthful lipids which are mainly composed of medium chain fatty acid (MCFA). MCT is made up exclusively of MCFA whereas MLCT contains a mixture of MCFA and long chain fatty acid (LCFA), respectively. Attributed by the unique metabolism of MCFA which is rapidly metabolized by the body, MCFA and MCT showed to acquire multiple physiological and functional properties in managing and reversing certain health disorders. Several chemically or enzymatically oils and fats modification processes catalyzed by a biological or chemical catalyst such as acidolysis, interesterification and esterification are adopted to synthesis MCT and MLCT. With their purported health benefits, MCT and MLCT are widely being used as nutraceutical in food and pharmaceutical sectors. This article aims to provide a comprehensive review on MCT and MLCT, with an emphasis on the basic understanding of its structures, properties, unique metabolism; the current status of the touted health benefits; latest routes of production; its up-to-date applications in the different food systems; relevant patents filed and its drawbacks.


Assuntos
Ácidos Graxos , Óleos de Plantas , Tecido Adiposo/metabolismo , Animais , Esterificação , Ácidos Graxos/metabolismo , Óleos de Plantas/química , Triglicerídeos/metabolismo
6.
Prep Biochem Biotechnol ; 52(6): 691-700, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34647854

RESUMO

Enterococcus sp. has been used as starters in food fermentation due to their probiotic and antimicrobial properties in food biopreservation. The antimicrobial properties were mainly contributed by the bacteriocin called enterocin. Hence, the availability of a cost-effective pilot-scale cultivation conditions is a necessity for the production of probiotic bacteria. This study aims to investigate optimization of medium composition using sugarcane molasses as a carbon source using response surface methodology and the potential use of fed-batch cultivation for improvement of the cell viability of Enterococcus faecium CW3801 for the use as a probiotic starter culture. Two feeding strategies (ramp and constant) were applied in fed-batch cultivation for enhancement of the production of E. faecium in a 2-L stirred tank bioreactor using the optimized medium and scaled up to a 15-L bioreactor. Optimized fermentation medium which comprised of 10% (v/v) of molasses and 10 g/L of yeast extract at pH 7 yielded maximum cell viability of 29.4 × 1011 CFU/mL with 3900 AU/mL of bacteriocin-like inhibitory substances (BLIS) activity. In the fed-batch, the cell viability (8.4 × 1013) and dry cell weight (6.34 g/L) reached the highest in optimized medium when the ramp (stepwise) feeding was applied. In scaling up to 15-L bioreactor, the growth of E. faecium was achieved at 2.3 × 1013 CFU/mL with the dry cell weight of 5.28 g/L under the same condition. The BLIS in 15-L bioreactor was 6% higher than the 2-L bioreactor. This study demonstrated that molasses and yeast extract are good feedstock for the growth of E. faecium. The E. faecium, a non-vancomycin resistant enterococcus (VRE) was successfully produced by a fed-batch cultivation approach and scaled up to a 15-L bioreactor using a ramp feeding strategy. Results from this study revealed that the fed-batch cultivation using molasses-based medium has industrial potential for the production of probiotics.


Assuntos
Bacteriocinas , Enterococcus faecium , Bacteriocinas/farmacologia , Reatores Biológicos/microbiologia , Meios de Cultura/química , Fermentação , Melaço/microbiologia
7.
J Sci Food Agric ; 102(15): 6921-6929, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35662022

RESUMO

BACKGROUND: Crude palm oil (CPO) is rich with phytonutrients such as carotenoids and tocols which possesses many health benefits. The aim of this research was to develop a methanol-free process to produce palm phytonutrients via enzymatic hydrolysis. In this work, triacylglycerol was hydrolyzed into free fatty acids (FFAs) using three different types of liquid lipases derived from Aspergillus oryzae (ET 2.0), Aspergillus niger (Habio) and Candida antartica (CALB). RESULTS: ET 2.0 was found to be the best enzyme for hydrolysis. Under the optimum condition, the FFA content achievable was 790 g kg-1 after 24 h of reaction with 1:1 water-to-oil mass ratio at 50 °C and stirring speed of 9 × g. Furthermore, with the addition of 2 g kg-1 ascorbic acid, it was found that 98% of carotenoids and 96% of tocols could be retained after hydrolysis. CONCLUSION: This work shows that enzymatic hydrolysis, which is inherently safer, cleaner and sustainable is feasible to replace the conventional methanolysis for the production of palm phytonutrients. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Petróleo , Óleo de Palmeira/química , Hidrólise , Lipase/química , Ácidos Graxos não Esterificados , Etanol , Carotenoides , Compostos Fitoquímicos , Óleos de Plantas/química
8.
J Sci Food Agric ; 101(10): 4161-4172, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33428211

RESUMO

BACKGROUND: Palm pressed fibre (PPF) is a cellulose-rich biomass residue produced during palm oil extraction. Its high cellulose content allows the isolation of cellulose nanocrystal (CNC). CNC has attracted scientific interest due to its biodegradability, biocompatibility and low cost. The present study isolated CNC from PPF using a cation exchange resin, which is an environmentally friendly and less harsh hydrolysis method than conventional mineral acid hydrolysis. Isolated CNC was used to stabilise an oil-in-water emulsion and the emulsion stability was evaluated in terms of droplet size, morphology and physical stability. RESULTS: PPF was subjected to alkali and bleach treatment prior to hydrolysis, which successfully removed 54% and 75% of non-cellulosic components (hemicellulose and lignin, respectively). Hydrolysis conditions of 5 h, 15:1 (w/w) resin-to-pulp ratio and 50 °C produced CNC particles of 50-100 nm in length. CNC had a crystallinity index of 42% and appeared rod-like morphologically. CNC-stabilised emulsion had better stability when used in combination with soy lecithin (SL), a well-established, commonly used food stabiliser. Emulsion stabilised by the binary mixture of CNC and SL had droplet size, morphology and physical stability comparable to those of emulsion stabilised using SL. CONCLUSIONS: CNC was successfully isolated from PPF through a cation exchange resin. This offers an alternative usage for the underutilised PPF to be converted into value-added products. Isolated CNC was also found to have promising potential in the stabilisation of Pickering emulsions. These results provide useful information indicating CNC as a natural and sustainable stabiliser for food, cosmeceutical and pharmaceutical applications. © 2021 Society of Chemical Industry.


Assuntos
Arecaceae/química , Celulose/química , Fibras na Dieta/análise , Emulsificantes/química , Nanopartículas/química , Extratos Vegetais/química , Resinas de Troca de Cátion/química , Celulose/isolamento & purificação , Emulsificantes/isolamento & purificação , Hidrólise , Extratos Vegetais/isolamento & purificação
9.
Crit Rev Food Sci Nutr ; 60(15): 2509-2525, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31418288

RESUMO

Diacylglycerol (DAG) is a world leading anti-obesity functional cooking oil synthesized via structural modification of conventional fats and oils. DAG exits in three stereoisomers namely sn-1,2-DAG, sn-1,3-DAG, and sn-2,3-DAG. DAG particularly sn-1,3-DAG demonstrated to have the potential in suppressing body fat accumulation and lowering postprandial serum triacylglycerol, cholesterol and glucose level. DAG also showed to improve bone health. This is attributed to DAG structure itself that caused it to absorb and digest via different metabolic pathway than conventional fats and oils. With its purported health benefits, many studies attempt to enzymatically or chemically synthesis DAG through various routes. DAG has also received wide attention as low calorie fat substitute and has been incorporated into various food matrixes. Despite being claimed as healthy cooking oil the safety of DAG still remained uncertain. DAG was banned from sale as it was found to contain probable carcinogen glycidol fatty acid esters. The article aims to provide a comprehensive and latest review of DAG emphasizing on its structure and properties, safety and regulation, process developments, metabolism and beneficial health attributes as well as its applications in the food industry.


Assuntos
Dieta Saudável , Diglicerídeos/administração & dosagem , Diglicerídeos/farmacologia , Inocuidade dos Alimentos , Alimento Funcional , Óleos/administração & dosagem , Óleos/farmacologia , Colesterol/sangue , Diglicerídeos/efeitos adversos , Diglicerídeos/síntese química , Glucose/metabolismo , Humanos , Óleos/efeitos adversos , Óleos/síntese química , Período Pós-Prandial/efeitos dos fármacos , Triglicerídeos/sangue
10.
BMC Microbiol ; 18(1): 3, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29439680

RESUMO

BACKGROUND: Demand for high-throughput bioprocessing has dramatically increased especially in the biopharmaceutical industry because the technologies are of vital importance to process optimization and media development. This can be efficiently boosted by using microtiter plate (MTP) cultivation setup embedded into an automated liquid-handling system. The objective of this study was to establish an automated microscale method for upstream and downstream bioprocessing of α-IFN2b production by recombinant Escherichia coli. The extraction performance of α-IFN2b by osmotic shock using two different systems, automated microscale platform and manual extraction in MTP was compared. RESULTS: The amount of α-IFN2b extracted using automated microscale platform (49.2 µg/L) was comparable to manual osmotic shock method (48.8 µg/L), but the standard deviation was 2 times lower as compared to manual osmotic shock method. Fermentation parameters in MTP involving inoculum size, agitation speed, working volume and induction profiling revealed that the fermentation conditions for the highest production of α-IFN2b (85.5 µg/L) was attained at inoculum size of 8%, working volume of 40% and agitation speed of 1000 rpm with induction at 4 h after the inoculation. CONCLUSION: Although the findings at MTP scale did not show perfect scalable results as compared to shake flask culture, but microscale technique development would serve as a convenient and low-cost solution in process optimization for recombinant protein.


Assuntos
Reatores Biológicos/microbiologia , Escherichia coli/metabolismo , Interferon-alfa/biossíntese , Biomassa , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Fermentação , Microbiologia Industrial/métodos , Cinética , Pressão Osmótica , Oxigênio , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Espalhamento de Radiação
11.
J Sci Food Agric ; 97(5): 1379-1385, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27801514

RESUMO

Non-enzymatic browning has been a wide and interesting research area in the food industry, ranging from the complexity of the reaction to its applications in the food industry as well as its ever-debatable health effects. This review provides a new perspective to the Maillard reaction apart from its ubiquitous function in enhancing food flavour, taste and appearance. It focuses on the recent application of Maillard reaction products as an inexpensive and excellent source of emulsifiers as well as superior encapsulating matrices for the entrapment of bioactive compounds. Additionally, it will also discuss the latest approaches employed to perform the Maillard reaction as well as several important reaction parameters that need to be taken into consideration when conducting the Maillard reaction. © 2016 Society of Chemical Industry.


Assuntos
Emulsificantes/química , Reação de Maillard , Indústria de Processamento de Alimentos/métodos
12.
J Food Sci Technol ; 52(2): 685-96, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25694677

RESUMO

Structured lipid such as medium-and long-chain triacylglycerol (MLCT) is claimed to be able to suppress body fat accumulation and be used to manage obesity. Response surface methodology (RSM) with four factors and three levels (+1,0,-1) faced centered composite design (FCCD) was employed for optimization of the enzymatic interesterification conditions of palm-based MLCT (P-MLCT) production. The effect of the four variables namely: substrate ratio palm kernel oil: palm oil, PKO:PO (40:60-100:0 w/w), temperature (50-70 °C), reaction time (0.5-7.5 h) and enzyme load (5-15 % w/w) on the P-MLCT yield (%) and by products (%) produced were investigated. The responses were determined via acylglycerol composition obtained from high performance liquid chromatography. Well-fitted models were successfully established for both responses: P-MLCT yield (R (2) = 0.9979) and by-products (R (2) = 0.9892). The P-MLCT yield was significantly (P < 0.05) affected by substrate ratio, reaction time and reaction temperature but not enzyme load (P > 0.05). Substrate ratio PKO: PO (100:0 w/w) gave the highest yield of P-MLCT (61 %). Nonetheless, substrate ratio of PKO: PO (90:10w/w) was chosen to improve the fatty acid composition of the P-MLCT. The optimized conditions for substrate ratio PKO: PO (90:10 w/w) was 7.26 h, 50 °C and 5 % (w/w) Lipozyme TLIM lipase, which managed to give 60 % yields of P-MLCT. Up scaled results in stirred tank batch reactor gave similar yields as lab scale. A 20 % increase in P-MLCT yield was obtained via RSM. The effect of enzymatic interesterification on the physicochemical properties of PKO:PO (90:10 w/w) were also studied. Thermoprofile showed that the P-MLCT oil melted below body temperature of 37 °C.

13.
Food Chem ; 456: 140005, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38870815

RESUMO

The major lipids and antioxidant activities of Asterias rolleston gonad lipids were evaluated systematically. Major lipids of A. Rolleston gonad lipids were triacylglycerols (TAGs) and phospholipids (PLs). Total lipids were composed of 15.62% of polyunsaturated fatty acids (PUFAs), and 40.81% of monounsaturated fatty acids (MUFAs). The most abundant PUFA were C20:5n-3 (EPA) (6.28%) and C22:6n-3 (DHA) (5.80%). Predominantly composed of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), polar lipids were rich in PUFAs and could contain up to 34.59% EPA and DHA, and PE and PI (phosphatidylinositol) were also found to be the main carriers of EPA and ARA (arachidonic acid) in polar lipids. The MUFA and PUFA of Sn-2 in TAG are 39.72% and 30.37%, respectively. A total of 64 TAG species were identified, with Eo-P-M, Eo-Eo-M, and M-M-Eo being the main TAGs components. Moreover, A. rollestoni gonad lipids exhibited potent radical scavenging activities and reducing power in a dose-dependent manner.

14.
Int J Biol Macromol ; 255: 128086, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981278

RESUMO

Chitosan (CS) based nanoparticles (NPs) were fabricated via an ionic gelation reaction modified by flaxseed gum (FG) or sodium tripolyphosphate (STPP). The average particle size, morphology, interfacial tension, and wettability of NPs were characterized. The particle size of CS-STPP-HA (hyaluronic acid)-FA (ferulic acid) NPs and CS-FG-HA-FA NPs was 400.8 nm and 262.4 nm, respectively under the optimized conditions of CS/STPP = 5:1 (w/w) or CS/FG = 1:1 (v/v) with HA concentration of 0.25 mg/mL and FA dosage of 25 µM. FG acted as a good alternative for STPP to form particles with CS in stabilizing Pickering emulsion with an internal diacylglycerol (DAG) phase of 50-80 % (v/v). The complex nanoparticles had high surface activity and contact angle close to 90 °C, being able to tightly packed at the droplet surface. The emulsions had high thermal, ionic and oxidative stability. With the aid of moisturizing polysaccharides and DAG oil, the emulsions had a good sustained-release ability for FA with deeper penetration and retention into the dermis of the skin. Thus, FG and HA-based NPs serve as green vehicles for the fabrication of novel Pickering emulsions and possess great potential to be applied as a delivery system for lipophilic active agents in functional food and cosmetic products.


Assuntos
Quitosana , Linho , Nanopartículas , Ácido Hialurônico , Emulsões , Tamanho da Partícula
15.
Food Chem ; 444: 138635, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38325087

RESUMO

The relationship between batch and continuous enzymatic interesterification was studied through enzymatic interesterification of beef tallow. The interesterification degree (ID) during the batch reaction was monitored based on triacylglycerol composition, sn-2 fatty acid composition, solid fat content, and melting profile and was described by an exponential model. A relationship equation featuring reaction parameters of the two reations was established to predict the ID and physicochemical characteristics in continuous interesterification. The prediction of the ID based on triacylglycerol composition was reliable, with an R2 value greater than 0.85. Interesterification produced more high-melting-point components for both reactions, but the acyl migration in the batch-stirring reactor was much greater, resulting in faster crystallization, a more delicate crystal network, and lower hardness. The relationship equation can be employed to predict the ID, but the prediction of physicochemical properties was constrained by the difference in acyl migration degree between the two reactions.


Assuntos
Gorduras , Ácidos Graxos , Animais , Bovinos , Esterificação , Gorduras/química , Triglicerídeos/química , Ácidos Graxos/química , Óleos de Plantas/química
16.
Food Chem ; 457: 140077, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38905833

RESUMO

Human intestinal microbiota plays a crucial role in converting secoisolariciresinol diglucoside, a lignan found in flaxseed, to enterodiol, which has a range of health benefits: antioxidative, antitumor, and estrogenic/anti-estrogenic effects. Given the high secoisolariciresinol diglucoside content in flaxseed cake, this study investigated the potential of co-fermenting flaxseed cake with fermented soybean product to isolate bacterial strains that effectively convert secoisolariciresinol diglucoside to enterodiol in a controlled environment (in vitro). The co-fermentation process with stinky tofu microbiota significantly altered the lignan, generating 12 intermediate lignan metabolites as identified by targeted metabolomics. One particular promising strain, ZB26, demonstrated an impressive ability to convert secoisolariciresinol diglucoside. It achieved a conversion rate of 87.42 ± 0.33%, with secoisolariciresinol and enterodiol generation rates of 94.22 ± 0.51% and 2.91 ± 0.03%, respectively. Further optimization revealed, under specific conditions (0.5 mM secoisolariciresinol diglucoside, pH 8, 30 °C for 3 days), ZB26 could convert an even higher percentage (97.75 ± 0.05%) of the secoisolariciresinol diglucoside to generate secoisolariciresinol (103.02 ± 0.16%) and enterodiol (3.18 ± 0.31%). These findings suggest that the identified strains ZB26 have promising potential for developing functional foods and ingredients enriched with lignans.

17.
Food Chem ; 449: 139243, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608605

RESUMO

Linusorbs (LO), cyclolinopeptides, are a group of cyclic hydrophobic peptides and considered a valuable by-product of flaxseed oil due to numerous health benefits. Currently applied acetone or methanol extraction could contaminate the feedstocks for further food-grade application. Using flaxseed cake as feedstock, this study established a practical method for preparing LO from pressed cake. Firstly, LO composition of 15 flaxseed cultivars was analyzed. Next, cold-pressed cake was milled and screened mechanically. The kernel and hull fractions were separated based on the disparity of their mechanical strength. Monitored by hyperspectral fluorescence, the LO-enriched kernel fraction separated from cold-pressed flaxseed cake was further used as feedstock for LO production. After ethanol extraction, partition, and precipitation, LOs were extracted from cold-pressed flaxseed cake with a purity of 91.4%. The proposed method could serve as feasible flaxseed cake valorization strategy and enable the preparation of other polar compounds such as flax lignan and mucilage.


Assuntos
Linho , Peptídeos Cíclicos , Sementes , Linho/química , Sementes/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/análise , Manipulação de Alimentos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
18.
Foods ; 12(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38137235

RESUMO

Water-in-oil-in-water (W/O/W) emulsions with high-melting diacylglycerol (DAG) crystals incorporated in the oil droplets were fabricated and the compositions were optimized to achieve the best physical stability. The stability against osmotic pressure, encapsulation efficiency and in vitro release profiles of both water- and oil-soluble bioactives were investigated. The presence of interfacial crystallized DAG shells increased the emulsion stability by reducing the swelling and shrinkage of emulsions against osmotic pressure and heating treatment. DAG crystals located at the inner water/oil (W1/O) interface and the gelation of the inner phase by gelatin helped reduce the oil droplet size and slow down the salt release rate. The DAG and gelatin-contained double emulsion showed improved encapsulation efficiency of bioactives, especially for the epigallocatechin gallate (EGCG) during storage. The double emulsions with DAG had a lower digestion rate but higher bioaccessibility of EGCG and curcumin after in vitro digestion. DAG-stabilized double emulsions with a gelled inner phase thus can be applied as controlled delivery systems for bioactives by forming robust interfacial crystalline shells.

19.
Ultrason Sonochem ; 92: 106280, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36587443

RESUMO

Ultrasound-assisted solvent extraction (UAE) was applied to extract underutilized Madhuca longifolia seed oil. The effect of extraction time, temperature, solvent type, solvent/sample ratio, and amplitude on the oil yield and recovery were investigated. Approximately 56.97% of oil yield and 99.54% of oil recovery were attained using mild conditions of 35 min, 35 °C, 40% amplitude, isopropanol to acetone (1:1), and solvent to sample (20 mL/g). UAE oil yield and recovery were comparable with Soxhlet extraction (SXE) whilst mechanical pressing (ME) yielded < 50% of UAE recovery. UAE does not affect the fatty acids composition (46% C18:1; 22% C16:0; 21% C18:0, 10% C18:2), and triacylglycerol profile (23% POO, 17% POS, 16% SOO, and 14% POP). Interestingly, UAE extracted oil conferred remarkably (P < 0.05) higher antioxidant capacity (IC50 of DPPH 106.60 mg/mL and ABTS 39.80 mg/mL) than SXE (IC50 of DPPH 810.40 mg/mL and ABTS 757.43 mg/mL) or ME (IC50 of DPPH 622.38 mg/mL and ABTS 392.87 mg/mL).


Assuntos
Antioxidantes , Madhuca , Antioxidantes/química , Óleos de Plantas/química , Solventes/química
20.
Foods ; 12(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37238863

RESUMO

Curcumin-loaded solid lipid nanoparticles (Cur-SLN) were prepared using medium- and long chain diacylglycerol (MLCD) or glycerol tripalmitate (TP) as lipid matrix and three kinds of surfactants including Tween 20 (T20), quillaja saponin (SQ) and rhamnolipid (Rha). The MLCD-based SLNs had a smaller size and lower surface charge than TP-SLNs with a Cur encapsulation efficiency of 87.54-95.32% and the Rha-based SLNs exhibited a small size but low stability to pH decreases and ionic strength. Thermal analysis and X-ray diffraction results confirmed that the SLNs with different lipid cores showed varying structures, melting and crystallization profiles. The emulsifiers slightly impacted the crystal polymorphism of MLCD-SLNs but largely influenced that of TP-SLNs. Meanwhile, the polymorphism transition was less significant for MLCD-SLNs, which accounted for the better stabilization of particle size and higher encapsulation efficiency of MLCD-SLNs during storage. In vitro studies showed that emulsifier formulation greatly impacted on the Cur bioavailability, whereby T20-SLNs showed much higher digestibility and bioavailability than that of SQ- and Rha-SLNs possibly due to the difference in the interfacial composition. Mathematical modeling analysis of the membrane release further confirmed that Cur was mainly released from the intestinal phase and T20-SLNs showed a faster release rate compared with other formulations. This work contributes to a better understanding of the performance of MLCD in lipophilic compound-loaded SLNs and has important implications for the rational design of lipid nanocarriers and in instructing their application in functional food products.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa