Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Hepatology ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38385945

RESUMO

BACKGROUND AND AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a broad and continuous spectrum of liver diseases ranging from fatty liver to steatohepatitis. The intricate interactions of genetic, epigenetic, and environmental factors in the development and progression of MASLD remain elusive. Here, we aimed to achieve an integrative understanding of the genomic and transcriptomic alterations throughout the progression of MASLD. APPROACH AND RESULTS: RNA-Seq profiling (n = 146) and whole-exome sequencing (n = 132) of MASLD liver tissue samples identified 3 transcriptomic subtypes (G1-G3) of MASLD, which were characterized by stepwise pathological and molecular progression of the disease. Macrophage-driven inflammatory activities were identified as a key feature for differentiating these subtypes. This subtype-discriminating macrophage interplay was significantly associated with both the expression and genetic variation of the dsDNA sensor IFI16 (rs6940, A>T, T779S), establishing it as a fundamental molecular factor in MASLD progression. The in vitro dsDNA-IFI16 binding experiments and structural modeling revealed that the IFI16 variant exhibited increased stability and stronger dsDNA binding affinity compared to the wild-type. Further downstream investigation suggested that the IFI16 variant exacerbated DNA sensing-mediated inflammatory signals through mitochondrial dysfunction-related signaling of the IFI16-PYCARD-CASP1 pathway. CONCLUSIONS: This study unveils a comprehensive understanding of MASLD progression through transcriptomic classification, highlighting the crucial roles of IFI16 variants. Targeting the IFI16-PYCARD-CASP1 pathway may pave the way for the development of novel diagnostics and therapeutics for MASLD.

2.
Cell Commun Signal ; 21(1): 44, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864432

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) induces inflammation, autoantibody production, and thrombosis, which are common symptoms of autoimmune diseases, including rheumatoid arthritis (RA). However, the effect of COVID-19 on autoimmune disease is not yet fully understood. METHODS: This study was performed to investigate the effects of COVID-19 on the development and progression of RA using a collagen-induced arthritis (CIA) animal model. Human fibroblast-like synoviocytes (FLS) were transduced with lentivirus carrying the SARS-CoV-2 spike protein gene in vitro, and the levels of inflammatory cytokine and chemokine expression were measured. For in vivo experiments, CIA mice were injected with the gene encoding SARS-CoV-2 spike protein, and disease severity, levels of autoantibodies, thrombotic factors, and inflammatory cytokine and chemokine expression were assessed. In the in vitro experiments, the levels of inflammatory cytokine and chemokine expression were significantly increased by overexpression of SARS-CoV-2 spike protein in human FLS. RESULTS: The incidence and severity of RA in CIA mice were slightly increased by SARS-CoV-2 spike protein in vivo. In addition, the levels of autoantibodies and thrombotic factors, such as anti-CXC chemokine ligand 4 (CXCL4, also called PF4) antibodies and anti-phospholipid antibodies were significantly increased by SARS-CoV-2 spike protein. Furthermore, tissue destruction and inflammatory cytokine level in joint tissue were markedly increased in CIA mice by SARS-CoV-2 spike protein. CONCLUSIONS: The results of the present study suggested that COVID-19 accelerates the development and progression of RA by increasing inflammation, autoantibody production, and thrombosis. Video Abstract.


Assuntos
Artrite Experimental , Artrite Reumatoide , COVID-19 , Humanos , Animais , Camundongos , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2 , Inflamação , Citocinas , Autoanticorpos
3.
Cell Commun Signal ; 21(1): 135, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316856

RESUMO

BACKGROUND: Sjögren's syndrome (SS) is an autoimmune disease characterized by inflammation of the exocrine gland. An imbalance of gut microbiota has been linked to SS. However, the molecular mechanism is unclear. We investigated the effects of Lactobacillus acidophilus (L. acidophilus) and propionate on the development and progression of SS in mouse model. METHODS: We compared the gut microbiomes of young and old mice. We administered L. acidophilus and propionate up to 24 weeks. The saliva flow rate and the histopathology of the salivary glands were investigated, and the effects of propionate on the STIM1-STING signaling pathway were evaluated in vitro. RESULTS: Lactobacillaceae and Lactobacillus were decreased in aged mice. SS symptoms were ameliorated by L. acidophilus. The abundance of propionate-producing bacterial was increased by L. acidophilus. Propionate ameliorated the development and progression of SS by inhibiting the STIM1-STING signaling pathway. CONCLUSIONS: The findings suggest that Lactobacillus acidophilus and propionate have therapeutic potential for SS. Video Abstract.


Assuntos
Síndrome de Sjogren , Animais , Camundongos , Lactobacillus acidophilus , Propionatos , Inflamação , Transdução de Sinais
4.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239877

RESUMO

nc886 is a medium-sized non-coding RNA that is transcribed by RNA polymerase III (Pol III) and plays diverse roles in tumorigenesis, innate immunity, and other cellular processes. Although Pol III-transcribed ncRNAs were previously thought to be expressed constitutively, this concept is evolving, and nc886 is the most notable example. The transcription of nc886 in a cell, as well as in human individuals, is controlled by multiple mechanisms, including its promoter CpG DNA methylation and transcription factor activity. Additionally, the RNA instability of nc886 contributes to its highly variable steady-state expression levels in a given situation. This comprehensive review discusses nc886's variable expression in physiological and pathological conditions and critically examines the regulatory factors that determine its expression levels.


Assuntos
RNA Polimerase III , RNA não Traduzido , Humanos , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Metilação de DNA , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Transcrição Gênica
5.
Proc Natl Acad Sci U S A ; 116(17): 8289-8294, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30948645

RESUMO

DNA-reactive compounds are harnessed for cancer chemotherapy. Their genotoxic effects are considered to be the main mechanism for the cytotoxicity to date. Because this mechanism preferentially affects actively proliferating cells, it is postulated that the cytotoxicity is specific to cancer cells. Nonetheless, they do harm normal quiescent cells, suggesting that there are other cytotoxic mechanisms to be uncovered. By employing doxorubicin as a representative DNA-reactive compound, we have discovered a cytotoxic mechanism that involves a cellular noncoding RNA (ncRNA) nc886 and protein kinase R (PKR) that is a proapoptotic protein. nc886 is transcribed by RNA polymerase III (Pol III), binds to PKR, and prevents it from aberrant activation in most normal cells. We have shown here that doxorubicin evicts Pol III from DNA and, thereby, shuts down nc886 transcription. Consequently, the instantaneous depletion of nc886 provokes PKR and leads to apoptosis. In a short-pulse treatment of doxorubicin, these events are the main cause of cytotoxicity preceding the DNA damage response in a 3D culture system as well as the monolayer cultures. By identifying nc886 as a molecular signal for PKR to sense doxorubicin, we have provided an explanation for the conundrum why DNA-damaging drugs can be cytotoxic to quiescent cells that have the competent nc886/PKR pathway.


Assuntos
Apoptose/efeitos dos fármacos , DNA/metabolismo , MicroRNAs/metabolismo , RNA não Traduzido , Linhagem Celular , Doxorrubicina/farmacologia , Humanos , MicroRNAs/genética , RNA Polimerase III/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transdução de Sinais/efeitos dos fármacos , eIF-2 Quinase/metabolismo
6.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670458

RESUMO

Interferons (IFNs) are a crucial component in the innate immune response. Especially the IFN-ß signaling operates in most cell types and plays a key role in the first line of defense upon pathogen intrusion. The induction of IFN-ß should be tightly controlled, because its hyperactivation can lead to tissue damage or autoimmune diseases. Activation of the IFN-ß promoter needs Interferon Regulatory Factor 3 (IRF3), together with Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Activator Protein 1 (AP-1). Here we report that a human noncoding RNA, nc886, is a novel suppressor for the IFN-ß signaling and inflammation. Upon treatment with several pathogen-associated molecular patterns and viruses, nc886 suppresses the activation of IRF3 and also inhibits NF-κB and AP-1 via inhibiting Protein Kinase R (PKR). These events lead to decreased expression of IFN-ß and resultantly IFN-stimulated genes. nc886's role might be to restrict the IFN-ß signaling from hyperactivation. Since nc886 expression is regulated by epigenetic and environmental factors, nc886 might explain why innate immune responses to pathogens are variable depending on biological settings.


Assuntos
Regulação da Expressão Gênica/imunologia , Fator Regulador 3 de Interferon/imunologia , Interferon Tipo I/imunologia , RNA não Traduzido/imunologia , Animais , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , NF-kappa B/imunologia , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Células RAW 264.7 , RNA não Traduzido/genética , Transdução de Sinais/imunologia , Fator de Transcrição AP-1/imunologia , Fator de Transcrição AP-1/metabolismo , Vírus/imunologia , eIF-2 Quinase/genética , eIF-2 Quinase/imunologia , eIF-2 Quinase/metabolismo
7.
J Allergy Clin Immunol ; 136(3): 713-24, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25936568

RESUMO

BACKGROUND: Langerhans cells (LCs) are skin-resident dendritic cells (DCs) that orchestrate skin immunity. CCCTC-binding factor (CTCF) is a highly conserved DNA-binding protein that regulates higher-order chromatin organization and is involved in various gene regulation processes. OBJECTIVE: We sought to clarify a possible role for CTCF in LC homeostasis and function in vivo. METHODS: We used a conditional gene deletion mouse system to generate DC- and LC-specific CTCF-ablated mice. Short hairpin RNA-mediated RNA interference was used to silence CTCF expression in human monocyte-derived Langerhans cells. DC populations were assessed by using flow cytometry and immunofluorescence. Gene expression arrays were performed to identify genes regulated by CTCF in LCs. Contact hypersensitivity and epicutaneous sensitization responses were measured to examine the functional significance of CTCF ablation. RESULTS: DC-specific CTCF deletion led to a reduced pool of systemic DCs, with LCs most severely affected. Decreases in epidermal LC numbers were specifically associated with self-turnover defects. Interestingly, CTCF-deficient LCs demonstrated impaired migration out of the epidermis. Whole-transcriptome analyses revealed that genes that promoted cell adhesion were highly expressed, but CCR7 was downregulated in CTCF-depleted LCs. Hapten-induced contact hypersensitivity responses were more sustained in LC-specific CTCF-deficient mice, whereas epicutaneous sensitization to protein antigen was attenuated, indicating that CTCF-dependent LC homeostasis is required for optimal immune function of LCs in a context-dependent manner. CONCLUSION: Our results show that CTCF positively regulates the homeostatic pool and the efficient emigration of LCs, which are required for modulating the functional immune network of the skin.


Assuntos
Dermatite de Contato/genética , Homeostase/genética , Células de Langerhans/metabolismo , Proteínas Repressoras/genética , Animais , Fator de Ligação a CCCTC , Adesão Celular , Movimento Celular/genética , Movimento Celular/imunologia , Dermatite de Contato/imunologia , Dermatite de Contato/patologia , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Haptenos , Homeostase/imunologia , Humanos , Células de Langerhans/imunologia , Células de Langerhans/patologia , Camundongos , Camundongos Knockout , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Receptores CCR7/genética , Receptores CCR7/imunologia , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/deficiência , Proteínas Repressoras/imunologia , Transdução de Sinais
8.
Mol Carcinog ; 54 Suppl 1: E72-80, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24817037

RESUMO

This study was aimed at understanding the clinicopathological significance of HOXA9 hypermethylation in non-small cell lung cancer (NSCLC). HOXA9 hypermethylation was characterized in six lung cancer cell lines, and its clinicopathological significance was analyzed using methylation-specific PCR in 271 formalin-fixed paraffin-embedded tissues and 27 fresh-frozen tumor and matched normal tissues from 298 NSCLC patients, and Ki-67 expression was analyzed using immunohistochemistry. The promoter region of HOXA9 was highly methylated in six lung cancer cell lines, but not in normal bronchial epithelial cells. The loss of expression was restored by treatment of the cells with a demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC). Transient transfection of HOXA9 into H23 lung cancer cells resulted in the inhibition of cell migration but not proliferation. Conversely, sequence-specific siRNA-mediated knockdown of HOXA9 enhanced cell migration. The mRNA levels of HOXA9 in 27 fresh-frozen tumor tissues were significantly lower than in matched normal tissues (P<0.0001; Wilcoxon signed-rank test). HOXA9 hypermethylation was found in 191 (70%) of 271 primary NSCLCs. HOXA9 hypermethylation was not associated with tumor size (P=0.12) and Ki-67 proliferation index (P=0.15). However, patients with HOXA9 hypermethylation had poor recurrence-free survival (hazard ratio=3.98, 95% confidence interval = 1.07-17.09, P=0.01) in never-smokers, after adjusting for age, sex, tumor size, adjuvant therapy, pathologic stage, and histology. In conclusion, the present study suggests that HOXA9 inhibits migration of lung cancer cells and its hypermethylation is an independent prognostic factor for recurrence-free survival in never-smokers with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Metilação de DNA , Proteínas de Homeodomínio/genética , Neoplasias Pulmonares/patologia , Idoso , Sequência de Bases , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Primers do DNA , Feminino , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Reação em Cadeia da Polimerase , Análise de Sobrevida
9.
Cancer ; 120(14): 2090-8, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24737599

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) T790M mutation drives acquired drug resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in patients with EGFR-mutant lung cancer. However, it was reported that this mutation may exist before drug exposure. The objective of the current study was to evaluate whether the clinical outcomes are affected by the percentage of preexisting T790M mutations within a tumor. METHODS: Pretreatment tissues were collected from 124 patients with advanced non-small cell lung cancer with sensitizing EGFR mutations that were detected by direct sequencing. Genotyping for EGFR T790M mutation was further performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Patients who were positive for the T790M mutation were divided to 2 subgroups according to T790M mutant signal frequency. RESULTS: The T790M mutation was found in 31 patients (25.0%). The T790M mutation frequency at which the risk of disease progression after therapy with EGFR-TKIs begins to increase was estimated to be 3.2%. The patients with T790M-positive tumors had a shorter time to disease progression after treatment with EGFR-TKIs (median, 6.3 months vs 11.5 months; P < .001) and overall survival (median, 16.1 months vs 26.5 months; P = .065) compared with those with T790M-negative tumors. Among the T790M-positive patients, the patients with high T790M frequency (9 patients) were found to have a shorter time to disease progression (median, 2.4 months vs 6.7 months; P = .009) and overall survival (median, 9.1 months vs 18.7 months; P = .018) compared with those with low T790M frequency (22 patients). CONCLUSIONS: A preexisting EGFR T790M mutation was noted in 25% of patients with EGFR-mutant lung cancer. Patients with a high T790M mutation frequency had worse clinical outcomes to EGFR-TKIs than patients with a low T790M mutation frequency.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Povo Asiático/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Povo Asiático/estatística & dados numéricos , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Gefitinibe , Genótipo , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/patologia , Masculino , Metionina , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Quinazolinas/administração & dosagem , República da Coreia/epidemiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Treonina , Resultado do Tratamento , Células Tumorais Cultivadas
10.
Hum Genet ; 133(3): 281-97, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24129831

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a common human genetic disease characterized by the formation of multiple fluid-filled cysts in bilateral kidneys. Although mutations in polycystic kidney disease 1 (PKD1) are predominantly responsible for ADPKD, the focal and sporadic property of individual cystogenesis suggests another molecular mechanism such as epigenetic alterations. To determine the epigenomic alterations in ADPKD and their functional relevance, ADPKD and non-ADPKD individuals were analyzed by unbiased methylation profiling genome-wide and compared with their expression data. Intriguingly, PKD1 and other genes related to ion transport and cell adhesion were hypermethylated in gene-body regions, and their expressions were downregulated in ADPKD, implicating epigenetic silencing as the key mechanism underlying cystogenesis. Especially, in patients with ADPKD, PKD1 was hypermethylated in gene-body region and it was associated with recruitment of methyl-CpG-binding domain 2 proteins. Moreover, treatment with DNA methylation inhibitors retarded cyst formation of Madin-Darby Canine Kidney cells, accompanied with the upregulation of Pkd1 expression. These results are consistent with previous studies that knock-down of PKD1 was sufficient for cystogenesis. Therefore, our results reveal a critical role for hypermethylation of PKD1 and cystogenesis-related regulatory genes in cyst development, suggesting epigenetic therapy as a potential treatment for ADPKD.


Assuntos
Cistos/genética , Metilação de DNA , Epigênese Genética , Estudo de Associação Genômica Ampla , Rim/patologia , Rim Policístico Autossômico Dominante/genética , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Hibridização Genômica Comparativa , Biologia Computacional , Cistos/patologia , Cães , Regulação para Baixo , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Células Madin Darby de Rim Canino , Mutação , Rim Policístico Autossômico Dominante/patologia , RNA/genética , RNA/isolamento & purificação , Análise de Sequência de DNA , Transdução de Sinais , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Genomics Inform ; 22(1): 6, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38907287

RESUMO

Here, we investigated that the heat shock protein 47 (HSP47) plays a crucial role in the progression of gastric cancer (GC). We analyzed HSP47 gene expression in GC cell lines and patient tissues. The HSP47 mRNA and protein expression levels were significantly higher in GC cell lines and tumor tissues compared to normal gastric mucosa. Using siRNA to silence the expression of HSP47 in GC cells resulted in a significant reduction in their proliferation, wound healing, migration, and invasion capacities. Additionally, we also showed that the mRNA expression of matrix metallopeptidase-7 (MMP-7), a metastasis-promoting gene, was significantly reduced in HSP47 siRNA-transfected GC cells. We confirmed that the HSP47 promoter region was methylated in the SNU-216 GC cell line expressing low levels of HSP47 and in most non-cancerous gastric tissues. It means that the expression of HSP47 is regulated by epigenetic regulatory mechanisms. These findings suggest that targeting HSP47, potentially through its promoter methylation, could be a useful new therapeutic strategy for treating GC.

12.
Lab Anim Res ; 40(1): 14, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589968

RESUMO

BACKGROUND: Gastrodia elata Blume (GEB), a traditional medicinal herb, has been reported to have pharmacological effect including protection against liver, neuron and kidney toxicity. However, explanation of its underlying mechanisms remains a great challenge. This study investigated the protective effects of GEB extract on vancomycin (VAN)-induced nephrotoxicity in rats and underlying mechanisms with emphasis on the anti-oxidative stress, anti-inflammation and anti-apoptosis. The male Sprague-Dawley rats were randomly divided three groups: control (CON) group, VAN group and GEB group with duration of 14 days. RESULTS: The kidney weight and the serum levels of blood urea nitrogen and creatinine in the GEB group were lower than the VAN group. Histological analysis using hematoxylin & eosin and periodic acid Schiff staining revealed pathological changes of the VAN group. Immunohistochemical analysis revealed that the expression levels of N-acetyl-D-glucosaminidase, myeloperoxidase and tumor necrosis factor-alpha in the GEB group were decreased when compared with the VAN group. The number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells, phosphohistone and malondialdehyde levels were lower in the GEB group than VAN group. The levels of total glutathione in the GEB group were higher than the VAN group. CONCLUSIONS: The findings of this study suggested that GEB extract prevents VAN-induced renal tissue damage through anti-oxidation, anti-inflammation and anti-apoptosis.

13.
Clin Mol Hepatol ; 30(2): 247-262, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281815

RESUMO

BACKGROUND/AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by fat accumulation in the liver. MASLD encompasses both steatosis and MASH. Since MASH can lead to cirrhosis and liver cancer, steatosis and MASH must be distinguished during patient treatment. Here, we investigate the genomes, epigenomes, and transcriptomes of MASLD patients to identify signature gene set for more accurate tracking of MASLD progression. METHODS: Biopsy-tissue and blood samples from patients with 134 MASLD, comprising 60 steatosis and 74 MASH patients were performed omics analysis. SVM learning algorithm were used to calculate most predictive features. Linear regression was applied to find signature gene set that distinguish the stage of MASLD and to validate their application into independent cohort of MASLD. RESULTS: After performing WGS, WES, WGBS, and total RNA-seq on 134 biopsy samples from confirmed MASLD patients, we provided 1,955 MASLD-associated features, out of 3,176 somatic variant callings, 58 DMRs, and 1,393 DEGs that track MASLD progression. Then, we used a SVM learning algorithm to analyze the data and select the most predictive features. Using linear regression, we identified a signature gene set capable of differentiating the various stages of MASLD and verified it in different independent cohorts of MASLD and a liver cancer cohort. CONCLUSION: We identified a signature gene set (i.e., CAPG, HYAL3, WIPI1, TREM2, SPP1, and RNASE6) with strong potential as a panel of diagnostic genes of MASLD-associated disease.


Assuntos
Fígado Gorduroso , Neoplasias Hepáticas , Humanos , Algoritmos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Progressão da Doença
14.
Apoptosis ; 18(1): 110-20, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161364

RESUMO

Microtubule inhibitors (MTIs) such as Taxol have been used for treating various malignant tumors. Although MTIs have been known to induce cell death through mitotic arrest, other mechanisms can operate in MTI-induced cell death. Especially, the role of p53 in this process has been controversial for a long time. Here we investigated the function of p53 in Taxol-induced apoptosis using p53 wild type and p53 null cancer cell lines. p53 was upregulated upon Taxol treatment in p53 wild type cells and deletion of p53 diminished Taxol-induced apoptosis. p53 target proteins including MDM2, p21, BAX, and ß-isoform of PUMA were also upregulated by Taxol in p53 wild type cells. Conversely, when the wild type p53 was re-introduced into two different p53 null cancer cell lines, Taxol-induced apoptosis was enhanced. Among post-translational modifications that affect p53 stability and function, p53 acetylation, rather than phosphorylation, increased significantly in Taxol-treated cells. When acetylation was enhanced by anti-Sirt1 siRNA or an HDAC inhibitor, Taxol-induced apoptosis was enhanced, which was not observed in p53 null cells. When an acetylation-defective mutant of p53 was re-introduced to p53 null cells, apoptosis was partially reduced compared to the re-introduction of the wild type p53. Thus, p53 plays a pro-apoptotic role in Taxol-induced apoptosis and acetylation of p53 contributes to this pro-apoptotic function in response to Taxol in several human cancer cell lines, suggesting that enhancing acetylation of p53 could have potential implication for increasing the sensitivity of cancer cells to Taxol.


Assuntos
Apoptose/efeitos dos fármacos , Paclitaxel/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Humanos , Processamento de Proteína Pós-Traducional
15.
Bioinformatics ; 28(5): 721-3, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22257667

RESUMO

UNLABELLED: FX is an RNA-Seq analysis tool, which runs in parallel on cloud computing infrastructure, for the estimation of gene expression levels and genomic variant calling. In the mapping of short RNA-Seq reads, FX uses a transcriptome-based reference primarily, generated from ~160 000 mRNA sequences from RefSeq, UCSC and Ensembl databases. This approach reduces the misalignment of reads originating from splicing junctions. Unmapped reads not aligned on known transcripts are then mapped on the human genome reference. FX allows analysis of RNA-Seq data on cloud computing infrastructures, supporting access through a user-friendly web interface. AVAILABILITY: FX is freely available on the web at (http://fx.gmi.ac.kr), and can be installed on local Hadoop clusters. Guidance for the installation and operation of FX can be found under the 'Documentation' menu on the website. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Perfilação da Expressão Gênica , Análise de Sequência de RNA , Interface Usuário-Computador , Genoma , Genoma Humano , Humanos , Sítios de Splice de RNA , Splicing de RNA , RNA Mensageiro/genética
16.
Am J Pathol ; 181(1): 43-52, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22609115

RESUMO

In an effort to identify novel genes related to the prognosis of gastric cancer, we performed gene expression profiling and found overexpressed levels of human interferon-induced transmembrane protein 1 (IFITM1). We validated the gastric cancer-specific up-regulation of IFITM1 and its association with cancer progression. We also studied its epigenetic regulation and tumorigenesis-related functions. Expression of IFITM1 was evaluated in various human gastric cancer cells and in 35 patient tumor tissues by quantitative RT-PCR and Western blot analyses. The results showed highly up-regulated IFITM1 in cancer cell lines and tissues. Furthermore, IHC studies were performed on 151 patient tissues, and a significant correlation was revealed between higher IFITM1 expression and Lauren's intestinal type (P = 0.007) and differentiated adenocarcinoma (P = 0.025). Quantitative studies of DNA methylation for 27 CpG sites in the regulatory region showed hypermethylation in cells expressing low levels of IFITM1. Methylation-dependent IFITM1 expression was confirmed further by in vitro demethylation using 5-aza-2'-deoxycytidine and luciferase assays. The functional analysis of IFITM1 by silencing of its expression with small-interfering RNA showed decreased migration and invasiveness of cancer cells, whereas its overexpression exhibited the opposite results. In this study, we demonstrated gastric cancer-specific overexpression of IFITM1 regulated by promoter methylation and the role of IFITM1 in cancer prognosis.


Assuntos
Antígenos de Diferenciação/biossíntese , Biomarcadores Tumorais/biossíntese , Epigênese Genética/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Gástricas/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Idoso , Antígenos de Diferenciação/genética , Biomarcadores Tumorais/genética , Movimento Celular/fisiologia , Ilhas de CpG/genética , Metilação de DNA , DNA de Neoplasias/genética , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , RNA Neoplásico/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Células Tumorais Cultivadas , Regulação para Cima/fisiologia
17.
J Hum Genet ; 58(4): 233-5, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23389241

RESUMO

Gastric cancer (GC) is the most common malignancy. The incidence rates remain remarkably high in East Asians. Although genome-wide association studies in the Han Chinese and Japanese populations have so far yielded susceptibility loci for GC, these findings need to be validated in an independent ethnic group. To identify the potential heterogeneity by histological classified subtypes (intestinal and diffuse), we examined the previously reported associations in the Korean population. PRKAA1 at 5p13.1 was found to be more strongly associated with intestinal type (odds ratio, OR=1.39, 95% CI (confidence interval) =1.22-1.58, P=3.77 × 10(-7)) than diffuse type. In addition, PSCA at 8q23.3 was significantly replicated in diffuse type (OR=1.49, 95% CI=1.32-1.67, P=2.43 × 10(-11)) but far less significant in intestinal type. In conclusion, these findings could bring additional insights into the etiologic heterogeneity in gastric carcinogenesis mechanisms.


Assuntos
Genoma Humano , Neoplasias Gástricas/genética , Povo Asiático , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , República da Coreia
18.
BMC Cancer ; 13: 43, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23374220

RESUMO

BACKGROUND: The aim of this study is to evaluate the associations between vascular endothelial growth factor (VEGF) Single-nucleotide polymorphisms (SNPs) and clinical outcome in advanced gastric cancer patients treated with oxaliplatin, 5-fluorouracil, and leucovorin (FOLFOX). METHODS: Genomic DNA was isolated from whole blood, and six VEGF (-2578C/A, -2489C/T, -1498 T/C, -634 G/C, +936C/T, and +1612 G/A) gene polymorphisms were analyzed by PCR. Levels of serum VEGF were measured using enzyme-linked immunoassays. RESULTS: Patients with G/G genotype for VEGF -634 G/C gene polymorphism showed a lower response rate (22.2%) than those with G/C or C/C genotype (32.3%, 51.1%; P = 0.034). Patients with the VEGF -634 G/C polymorphism G/C + C/C genotype had a longer progression free survival (PFS) of 4.9 months, compared with the PFS of 3.5 months for those with the G/G (P = 0.043, log-rank test). By multivariate analysis, this G/G genotype of VEGF -634 G/C polymorphism was identified as an independent prognostic factor (Hazard ratio 1.497, P = 0.017). CONCLUSION: Our data suggest that G/G genotype of VEGF -634 G/C polymorphism is related to the higher serum levels of VEGF, and poor clinical outcome in advanced gastric cancer patients.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Biomarcadores Tumorais/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Fator A de Crescimento do Endotélio Vascular/genética , Adenocarcinoma/sangue , Adenocarcinoma/patologia , Adulto , Idoso , Biomarcadores Tumorais/sangue , Distribuição de Qui-Quadrado , Intervalo Livre de Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Fluoruracila/administração & dosagem , Predisposição Genética para Doença , Humanos , Estimativa de Kaplan-Meier , Leucovorina/administração & dosagem , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Compostos Organoplatínicos/administração & dosagem , Fenótipo , Reação em Cadeia da Polimerase , Modelos de Riscos Proporcionais , Estudos Prospectivos , Neoplasias Gástricas/sangue , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Fatores de Tempo , Resultado do Tratamento , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/sangue , Adulto Jovem
19.
Genes Chromosomes Cancer ; 51(1): 30-41, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21936014

RESUMO

Gallbladder cancer (GBC) is relatively rare but has a high mortality rate. One candidate molecule which might be involved in GBC development is prostate stem cell antigen (PSCA), a glycosylphosphatidylinositol-anchored cell surface antigen with a tissue-specific pattern of expression in the epithelium of several organs, such as the prostate, stomach, bladder, and gallbladder. It is up-regulated in a number of cancers including prostate, urinary bladder, and pancreatic cancers, while it is down-regulated in esophageal and gastric cancers, suggesting that PSCA has an oncogenic activity in the former but a tumor suppressor activity in the latter. However, the precise function of PSCA and the regulatory mechanism for its expression in normal and cancer cells are yet to be determined. In this study, immunohistochemical analyses with a specific antibody revealed that PSCA is down-regulated in non-neoplastic gallbladder lesions such as cholesterolosis, cholecystolithiasis, and cholecystitis (9/17; 53%), and also in adenocarcinoma (40/44; 91%), a common neoplasm in gallbladder. Analyses of the DNA methylation status in the GBC cell lines by bisulfite-Pyrosequencing and a reporter assay for the PSCA promoter activity suggested that the down-regulation is explained, at least partly, by DNA methylation. Moreover, colony formation assay revealed that PSCA has cell-proliferation inhibition activity in the GBC cell lines, which was also observed in vivo. These lines of in vivo and in vitro evidence suggest that PSCA is acting as a tumor suppressor in GBC development.


Assuntos
Antígenos de Neoplasias/genética , Transformação Celular Neoplásica/genética , Regulação para Baixo/genética , Neoplasias da Vesícula Biliar/genética , Genes Supressores de Tumor , Proteínas de Neoplasias/genética , Linhagem Celular Tumoral , Proliferação de Células , Colecistite/genética , Metilação de DNA , Epitélio/metabolismo , Proteínas Ligadas por GPI/genética , Vesícula Biliar/metabolismo , Humanos , Masculino , Regiões Promotoras Genéticas
20.
J Inflamm (Lond) ; 20(1): 46, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129904

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) induces a dysfunctional immune response, inflammation, autoantibody production, and coagulopathy, which are symptoms that bear resemblance to those of autoimmune diseases, including systemic sclerosis (SSc). METHODS: While there is a single case report suggesting an association between COVID-19 and SSc, the effects of COVID-19 on SSc are not yet fully understood. Human embryonic kidney 293 (HEK293) cells were transfected with the SARS-CoV-2 spike protein gene, in the presence of TGF-ß. The expression levels of fibrosis-related proteins were measured via Western blotting. A bleomycin (BLM)-induced SSc mouse model was employed, wherein mice were injected with the gene encoding the SARS-CoV-2 spike protein and the ACE2 receptor. The levels of fibrosis, autoantibodies, thrombotic factors, and inflammatory cytokines in tissues and serum were analyzed. RESULTS: In vitro, the expression levels of fibrosis marker proteins were elevated in the spike protein group compared to the control group. In vivo, the skin thickness of SSc mice increased following exposure to the SARS-CoV-2 spike protein. Furthermore, the levels of autoantibodies and thrombotic factors, such as anti-phospholipid antibodies (APLA), were significantly increased in the presence of the protein. Flow cytometry analysis revealed increased expression of the proinflammatory cytokine IL-17 in the skin, lungs, and blood. Moreover, tissue fibrosis and levels of inflammatory cytokines in skin and lung tissues were markedly escalated in SSc mice subjected to the protein. CONCLUSION: COVID-19 may accelerate the development and progression of SSc by intensifying fibrosis through the upregulation of inflammation, autoantibody production, and thrombosis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa