Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
BMC Genomics ; 23(1): 853, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575377

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) are emerging as key modulators of inflammatory gene expression, but their roles in neuroinflammation are poorly understood. Here, we identified the inflammation-related lncRNAs and correlated mRNAs of the lipopolysaccharide (LPS)-treated human microglial cell line HMC3. We explored their potential roles and interactions using bioinformatics tools such as gene ontology (GO), kyoto encyclopedia of genes and genomes (KEGG), and weighted gene co-expression network analysis (WGCNA). RESULTS: We identified 5 differentially expressed (DE) lncRNAs, 4 of which (AC083837.1, IRF1-AS1, LINC02605, and MIR3142HG) are novel for microglia. The DElncRNAs with their correlated DEmRNAs (99 total) fell into two network modules that both were enriched with inflammation-related RNAs. However, treatment with the anti-inflammatory agent JQ1, an inhibitor of the bromodomain and extra-terminal (BET) protein BRD4, neutralized the LPS effect in only one module, showing little or even enhancing effect on the other. CONCLUSIONS: These results provide insight into, and a resource for studying, the regulation of microglia-mediated neuroinflammation and its potential therapy by small-molecule BET inhibitors.


Assuntos
Lipopolissacarídeos , RNA Longo não Codificante , Humanos , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Doenças Neuroinflamatórias , Proteínas Nucleares/genética , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Inflamação/genética , Proteínas de Ciclo Celular/genética
2.
J Biol Chem ; 294(21): 8424-8437, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30944148

RESUMO

Mesenchymal stromal cells (MSCs) can potently regulate the functions of immune cells and are being investigated for the management of inflammatory diseases. Toll-like receptor 3 (TLR3)-stimulated human MSCs (hMSCs) exhibit increased migration and chemotaxis within and toward damaged tissues. However, the regulatory mechanisms underlying these migratory activities are unclear. Therefore, we analyzed the migration capability and gene expression profiles of TLR3-stimulated hMSCs using RNA-Seq, wound healing, and transwell cell migration assay. Along with increased cell migration, the TLR3 stimulation also increased the expression of cytokines, chemokines, and cell migration-related genes. The promoter regions of the latter showed an enrichment of putative motifs for binding the transcription factors forkhead box O1 (FOXO1), FOXO3, NF-κB (NF-κB1), and RELA proto-oncogene and NF-κB subunit. Of note, FOXO1 inhibition by the FOXO1-selective inhibitor AS1842856 significantly reduced both migration and the expression of migration-related genes. In summary, our results indicate that TLR3 stimulation induces hMSC migration through the expression of FOXO1-activated genes.


Assuntos
Movimento Celular , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Receptor 3 Toll-Like/metabolismo , Adulto , Feminino , Proteína Forkhead Box O1/antagonistas & inibidores , Proteína Forkhead Box O1/genética , Humanos , Masculino , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Proto-Oncogene Mas , Quinolonas/farmacologia , Receptor 3 Toll-Like/agonistas , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
3.
J Neuroinflammation ; 13(1): 182, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27400875

RESUMO

BACKGROUND: Microglia are resident myeloid cells in the CNS that are activated by infection, neuronal injury, and inflammation. Established BV2 microglial cell lines have been the primary in vitro models used to study neuroinflammation for more than a decade because they reduce the requirement of continuously maintaining cell preparations and animal experimentation models. However, doubt has recently been raised regarding the value of BV2 cell lines as a model system. METHODS: We used triplicate RNA sequencing (RNA-seq) to investigate the molecular signature of primary and BV2 microglial cell lines using two transcriptomic techniques: global transcriptomic biological triplicate RNA-seq and quantitative real-time PCR. We analyzed differentially expressed genes (DEGs) to identify transcription factor (TF) motifs (-950 to +50 bp of the 5' upstream promoters) and epigenetic mechanisms. RESULTS: Sequencing assessment and quality evaluation revealed that primary microglia have a distinct transcriptomic signature and express a unique cluster of transcripts in response to lipopolysaccharide. This microglial signature was not observed in BV2 microglial cell lines. Importantly, we observed that previously unidentified TFs (i.e., IRF2, IRF5, IRF8, STAT1, STAT2, and STAT5A) and the epigenetic regulators KDM1A, NSD3, and SETDB2 were significantly and selectively expressed in primary microglia (PM). Although transcriptomic alterations known to occur in BV2 microglial cell lines were identified in PM, we also observed several novel transcriptomic alterations in PM that are not frequently observed in BV2 microglial cell lines. CONCLUSIONS: Collectively, these unprecedented findings demonstrate that established BV2 microglial cell lines are probably a poor representation of PM, and we establish a resource for future studies of neuroinflammation.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Análise de Variância , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Lipopolissacarídeos/farmacologia , Camundongos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Transcriptoma/fisiologia
4.
BMC Genomics ; 16: 517, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26159724

RESUMO

BACKGROUND: Resident macrophages in the CNS microglia become activated and produce proinflammatory molecules upon encountering bacteria or viruses. TLRs are a phylogenetically conserved diverse family of sensors that drive innate immune responses following interactions with PAMPs. TLR3 and TLR4 recognize viral dsRNA Poly (I:C) and bacterial endotoxin LPS, respectively. Importantly, these receptors differ in their downstream adaptor molecules. Thus far, only a few studies have investigated the effects of TLR3 and TLR4 in macrophages. However, a genome-wide search for the effects of these TLRs has not been performed in microglia using RNA-seq. Gene expression patterns were determined for the BV-2 microglial cell line when stimulated with viral dsRNA Poly (I:C) or bacterial endotoxin LPS to identify novel transcribed genes, as well as investigate how differences in downstream signaling could influence gene expression in innate immunity. RESULTS: Sequencing assessment and quality evaluation revealed that common and unique patterns of proinflammatory genes were significantly up-regulated in response to TLR3 and TLR4 stimulation. However, the IFN/viral response gene showed a stronger response to TLR3 stimulation than to TLR4 stimulation. Unexpectedly, TLR3 and TLR4 stimulation did not activate IFN-ß and IRF3 in BV-2 microglia. Most importantly, we observed that previously unidentified transcription factors (TFs) (i.e., IRF1, IRF7, and IRF9) and the epigenetic regulators KDM4A and DNMT3L were significantly up-regulated in both TLR3- and TLR4-stimulated microglia. We also identified 29 previously unidentified genes that are important in immune regulation. In addition, we confirmed the expressions of key inflammatory genes as well as pro-inflammatory mediators in the supernatants were significantly induced in TLR3-and TLR4-stimulated primary microglial cells. Moreover, transcriptional start sites (TSSs) and isoforms, as well as differential promoter usage, revealed a complex pattern of transcriptional and post-transcriptional gene regulation upon infection with TLR3 and TLR4. Furthermore, TF motif analysis (-950 to +50 bp of the 5' upstream promoters) revealed that the DNA sequences for NF-κB, IRF1, and STAT1 were significantly enriched in TLR3- and TLR4-stimulated microglia. CONCLUSIONS: These unprecedented findings not only permit a comparison of TLR3-and TLR4-stimulated genes but also identify new genes that have not been previously implicated in innate immunity.


Assuntos
Microglia/metabolismo , Receptor 3 Toll-Like/genética , Receptor 4 Toll-Like/genética , Transcriptoma/genética , Animais , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Mediadores da Inflamação/metabolismo , Fator Regulador 3 de Interferon/genética , Interferon beta/genética , Ligantes , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sítio de Iniciação de Transcrição/efeitos dos fármacos , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
5.
J Neuroinflammation ; 12: 36, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25890327

RESUMO

BACKGROUND: Microglial cells become rapidly activated through interaction with pathogens, and their persistent activation is associated with the production and secretion of various pro-inflammatory genes, cytokines, and chemokines, which may initiate or amplify neurodegenerative diseases. Bromodomain and extraterminal domain (BET) proteins are a group of epigenetic regulators that associate with acetylated histones and facilitate the transcription of target genes. A novel synthetic BET inhibitor, JQ1, was proven to exert immunosuppressive activities by inhibiting the expression of IL-6 and Tnf-α in macrophages. However, a genome-wide search for JQ1 molecular targets is largely unexplored in microglia. METHODS: The present study was aimed at evaluating the anti-inflammatory function and underlying genes targeted by JQ1 in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells using two transcriptomic techniques: global transcriptomic biological duplicate RNA sequencing and quantitative real-time PCR. Associated biological pathways and functional gene ontology were also evaluated. RESULTS: With a cutoff value of P ≤ 0.01 and fold change ≥1.5 log2, the expression level of 214 and 301 genes, including pro-inflammatory cytokine, chemokine, and transcription factors, was found to be upregulated in BV-2 cells stimulated with LPS for 2 and 4 h, respectively. Among these annotated genes, we found that JQ1 selectively reduced the expression of 78 and 118 genes (P ≤ 0.01, and fold change ≥ 1.5, respectively). Importantly, these inflammatory genes were not affected by JQ1 treatment alone. Furthermore, we confirmed that JQ1 reduced the expression of key inflammation- and immunity-related genes as well as cytokines/chemokines in the supernatants of LPS-treated primary microglial cells isolated from 3-day-old ICR mice. Utilizing functional group analysis, the genes affected by JQ1 were classified into four categories related to biological regulation, immune system processes, and response to stimuli. Moreover, the biological pathways and functional genomics obtained in this study may facilitate the suppression of different key inflammatory genes through JQ1-treated BV-2 microglial cells. CONCLUSIONS: These unprecedented results suggest the BET inhibitor JQ1 as a candidate for the prevention or therapeutic treatment of inflammation-mediated neurodegenerative diseases.


Assuntos
Azepinas/farmacologia , Sequência de Bases , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Imunossupressores/farmacologia , Triazóis/farmacologia , Animais , Linhagem Celular Transformada , Citocinas/genética , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fatores de Transcrição/metabolismo
6.
Mol Biol Rep ; 42(7): 1233-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25697417

RESUMO

Neural stem cells (NSCs) can be differentiated into one of three cell lineages: neurons, astrocytes or, oligodendrocytes. Some neurotoxins have the ability to deregulate this dynamic process. NSC cell fate can be altered by ethanol as reported previously. Our aim was to investigate the alteration of genes by ethanol during NSC differentiation and to explore the molecular mechanism underlying this phenomenon. Here, mouse fetal forebrain derived NSCs were differentiated for 2 days with or without of ethanol (50 mM). We performed a comparative microarray analysis at day two using GeneChip(®) Mouse Genome 430A 2.0 arrays. Microarray analysis showed that the expressions of 496 genes were altered by ethanol (56 and 440 were up- and down-regulated, respectively). Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed the association of the following altered genes in the Wnt signaling pathway: Wnt5a, Csnk2a1, Tcf7l2, Ccnd2, Nlk, Tbl1x, Tbl1xr1, Rac2 and Nfatc3. Quantitative real time PCR analysis also demonstrated the relative expression levels of these genes. As Wnt signaling is a player of brain development, ethanol-induced alterations may contribute to improper development of the brain. Our data could be a useful resource for elucidating the mechanism behind the ethanol neurotoxicity in developing brain.


Assuntos
Astrócitos/efeitos dos fármacos , Etanol/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transcriptoma , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Ciclinas/genética , Ciclinas/metabolismo , Feto , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Cultura Primária de Células , Prosencéfalo/citologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
7.
Exp Cell Res ; 328(2): 361-78, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25193078

RESUMO

JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53(-/-) NE-4Cs). We determined the effect of LPS as a model of inflammation in p53(-/-) NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53(-/-) NE-4Cs and in LPS-stimulated JMJD2A-kd p53(-/-) NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed.


Assuntos
Carcinogênese/genética , Ciclo Celular/genética , Histona Desmetilases/genética , Inflamação/genética , Lipopolissacarídeos/farmacologia , Placa Neural/metabolismo , Células-Tronco/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação para Baixo/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Genes Supressores de Tumor , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Placa Neural/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Fatores de Transcrição/genética , Transcriptoma/genética , Proteína Supressora de Tumor p53/genética
8.
Biochem J ; 459(3): 565-76, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24635319

RESUMO

We recently reported that hNSCs (human neural stem cells) have the interesting characteristic of migration towards an intracranial glioma. However, the molecules and mechanisms responsible for tumour tropism are unclear. In the present study, we used microarray and proteomics analyses to identify a novel chemoattractant molecule, TIMP-1 (tissue inhibitor of metalloproteinase-1), secreted from human brain tumour tissues. We demonstrate that TIMP-1 significantly enhances hNSC adhesion and migration in a cell culture system. These effects were critically dependent on CD63, as shRNA-mediated ablation of CD63 expression attenuated the response. TIMP-1 significantly increased the number of FAs (focal adhesions) and cytoskeletal reorganization for cell migration in hNSCs, whereas knockdown of CD63 resulted in decreased hNSC spreading, FAs and migration, even after TIMP-1 treatment. In addition, TIMP-1 binding to CD63 activated ß1 integrin-mediated signalling through Akt and FAK phosphorylation, leading to pattern changes in distribution of vinculin and F-actin (filamentous actin). Furthermore, inactivation of ß1 integrin by use of a blocking antibody or inhibition of PI3K (phosphoinositide 3-kinase) signalling impaired the migration of hNSCs towards TIMP-1. Collectively, our results underline TIMP-1 as a novel and effective key regulator of CD63 and ß1 integrin-mediated signalling, which regulates hNSC adhesion and migration.


Assuntos
Quimiotaxia , Integrina beta1/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Transdução de Sinais , Tetraspanina 30/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Adesão Celular , Linhagem Celular , Movimento Celular , Citoesqueleto/metabolismo , Inativação Gênica , Glioma/metabolismo , Glioma/patologia , Células HEK293 , Humanos , Integrina beta1/química , Camundongos , Células NIH 3T3 , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/patologia , Neurônios/metabolismo , Neurônios/patologia , RNA Interferente Pequeno , Proteínas Recombinantes/metabolismo , Tetraspanina 30/antagonistas & inibidores , Tetraspanina 30/genética , Inibidor Tecidual de Metaloproteinase-1/genética
9.
BMC Genomics ; 15: 644, 2014 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-25086961

RESUMO

BACKGROUND: Little is known about the relationship between miRNA and mRNA expression in Alzheimer's disease (AD) at early- or late-symptomatic stages. Sequence-based target prediction algorithms and anti-correlation profiles have been applied to predict miRNA targets using omics data, but this approach often leads to false positive predictions. Here, we applied the joint profiling analysis of mRNA and miRNA expression levels to Tg6799 AD model mice at 4 and 8 months of age using a network topology-based method. We constructed gene regulatory networks and used the PageRank algorithm to predict significant interactions between miRNA and mRNA. RESULTS: In total, 8 cluster modules were predicted by the transcriptome data for co-expression networks of AD pathology. In total, 54 miRNAs were identified as being differentially expressed in AD. Among these, 50 significant miRNA-mRNA interactions were predicted by integrating sequence target prediction, expression analysis, and the PageRank algorithm. We identified a set of miRNA-mRNA interactions that were changed in the hippocampus of Tg6799 AD model mice. We determined the expression levels of several candidate genes and miRNA. For functional validation in primary cultured neurons from Tg6799 mice (MT) and littermate (LM) controls, the overexpression of ARRDC3 enhanced PPP1R3C expression. ARRDC3 overexpression showed the tendency to decrease the expression of miR139-5p and miR3470a in both LM and MT primary cells. Pathological environment created by Aß treatment increased the gene expression of PPP1R3C and Sfpq but did not significantly alter the expression of miR139-5p or miR3470a. Aß treatment increased the promoter activity of ARRDC3 gene in LM primary cells but not in MT primary cells. CONCLUSIONS: Our results demonstrate AD-specific changes in the miRNA regulatory system as well as the relationship between the expression levels of miRNAs and their targets in the hippocampus of Tg6799 mice. These data help further our understanding of the function and mechanism of various miRNAs and their target genes in the molecular pathology of AD.


Assuntos
Algoritmos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Redes Reguladoras de Genes , Genômica/métodos , MicroRNAs/genética , MicroRNAs/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Arrestinas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Transgênicos , Mutação , Fator de Processamento Associado a PTB , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Transcriptoma
10.
J Appl Toxicol ; 34(1): 66-75, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23378141

RESUMO

Fetal alcohol spectrum disorder (FASD) is a set of developmental malformations caused by excess alcohol consumption during pregnancy. Using an in vitro system, we examined the role that chronic ethanol (EtOH) exposure plays in gene expression changes during the early stage of embryonic differentiation. We demonstrated that EtOH affected the cell morphology, cell cycle progression and also delayed the down-regulation of OCT4 and NANOG during differentiation. Gene expression profiling and pathway analysis demonstrated that EtOH deregulates many genes and pathways that are involved in early embryogenesis. Follow-up analyzes revealed that EtOH exposure to embryoid bodies (EBs) induced the expression of an organizer-specific gene, goosecoid (GSC), in comparison to controls. Moreover, EtOH treatment altered several important genes that are involved in embryonic structure formation, nervous system development, and placental and embryonic vascularization, which are all common processes that FASD can disrupt. Specifically, EtOH treatment let to a reduction in ALDOC, ENO2 and CDH1 expression, whereas EtOH treatment induced the expression of PTCH1, EGLN1, VEGFA and DEC2 in treated EBs. We also found that folic acid (FA) treatment was able to correct the expression of the majority of genes deregulated by EtOH exposure during early embryo development. Finally, the present study identified a gene set including GSC, which was deregulated by EtOH exposure that may contribute to the etiology of fetal alcohol syndrome (FAS). We also reported that EtOH-induced GSC expression is mediated by Nodal signaling, which may provide a new avenue for analyzing the molecular mechanisms behind EtOH teratogenicity in FASD individuals.


Assuntos
Etanol/efeitos adversos , Transtornos do Espectro Alcoólico Fetal/genética , Proteína Goosecoid/metabolismo , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Análise por Conglomerados , Regulação para Baixo , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Proteína Goosecoid/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Análise em Microsséries , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Placenta/efeitos dos fármacos , Gravidez , Reprodutibilidade dos Testes , Transdução de Sinais
11.
PLoS One ; 17(4): e0266966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35486664

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary liver cancer and poor prognosis. Emerging evidence suggests that epigenetic alterations play a crucial role in HCC, suggesting epigenetic inhibition as a promising therapeutic approach. Indeed, the bromodomain and extra-terminal (BET) inhibitors inhibit the proliferation and invasion of various cancers but still lack a strong mechanistic rationale. Here, we identified the differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) in human HCC cell line HepG2 treated with the BET inhibitors, JQ1, OTX015, or ABBV-075. We analyzed the correlation between DEmRNAs and DElncRNAs in common for the three inhibitors based on their expression profiles and performed functional annotation pathway enrichment analysis. Most of these shared DEmRNAs and DElncRNAs, including some novel transcripts, were downregulated, indicating decreased proliferation/adhesion and increased apoptosis/inflammation. Our study suggests that BET proteins play a crucial role in regulating cancer progression-related genes and provide a valuable resource for novel putative biomarkers and therapeutic targets in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética
12.
Sci Rep ; 12(1): 855, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039581

RESUMO

The proto-oncogene MYC is important for development and cell growth, however, its abnormal regulation causes cancer. Recent studies identified distinct enhancers of MYC in various cancers, but any MYC enhancer(s) in hepatocellular carcinoma (HCC) remain(s) elusive. By analyzing H3K27ac enrichment and enhancer RNA (eRNA) expression in cultured HCC cells, we identified six putative MYC enhancer regions. Amongst these, two highly active enhancers, located ~ 800 kb downstream of the MYC gene, were identified by qRT-PCR and reporter assays. We functionally confirmed these enhancers by demonstrating a significantly reduced MYC expression and cell proliferation upon CRISPR/Cas9-based deletion and/or antisense oligonucleotide (ASO)-mediated inhibition. In conclusion, we identified potential MYC enhancers of HCC and propose that the associated eRNAs may be suitable targets for HCC treatment.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Elementos Facilitadores Genéticos/genética , Elementos Facilitadores Genéticos/fisiologia , Genes myc/efeitos dos fármacos , Genes myc/fisiologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , RNA não Traduzido , Linhagem Celular Tumoral , Humanos
13.
Sci Rep ; 12(1): 7779, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546353

RESUMO

The epigenetic reader, bromodomain-containing 4 (BRD4), is overexpressed in hepatocellular carcinoma (HCC), and BRD4 inhibition is considered as a new therapeutic approach. The BRD inhibitor JQ1 is known to inhibit the enrichment of BRD4 at enhancer sites. Gene network analyses have implicated long non-coding RNAs (lncRNAs) in the effects of JQ1, but the precise molecular events remain unexplored. Here, we report that in HepG2 cells, JQ1 significantly reduced various proliferation-related lncRNAs, but up-regulated the known liver tumor marker, MALAT1. Using ChIP-sequencing data, ChIP-qPCR, luciferase reporter assays, and chromatin conformation capture (3C), we characterized the MALAT1 gene locus. We found that JQ1 elicited a rearrangement of its chromatin looping conformation, which involved the putative enhancers E1, E2, E3, the gene body, and the promoter. We further found that the forkhead box protein A2 (FOXA2) binds to E2 and the promoter; suppression of FOXA2 expression resulted in MALAT1 up-regulation and increased cell proliferation. These results suggest that the inhibition of MALAT1 may improve the effect of BET inhibitors as an anti-cancer therapy and that FOXA2 would be a suitable target for that approach.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Azepinas/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Cromatina , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/farmacologia , Fatores de Transcrição/metabolismo , Triazóis/farmacologia
14.
Sci Rep ; 11(1): 8828, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893325

RESUMO

Microglia, resident macrophages of the brain that act as primary immune cells, play essential roles in innate immunity and neuroinflammatory pathologies. Microglial cells are rapidly activated in response to infection and inflammation/injury, associated with the expression of proinflammatory genes and secretion of cytokines. The bromodomain and extra-terminal (BET) inhibitor JQ1 has been shown to be an epigenetic agent that reduces inflammation. In this study, we investigated the mechanisms underlying the anti-inflammatory and anti-migratory functions of JQ1 and the genes targeted by JQ1 in lipopolysaccharide (LPS)-activated human microglial clone 3 (HMC3) cells using RNA-sequencing (RNA-seq). We analyzed the pattern of inflammation-related genes (chemokines, cytokines, and interferon-stimulated genes) and migration-related genes with JQ1 treatment from differentially expressed genes analysis in HMC3 cells. We found that LPS-induced IRF1 directly regulated inflammation- and migration-related genes and that JQ1 significantly reduced IRF1 and its target genes. Additionally, IRF1 attenuation significantly downregulated target genes and inhibited microglial migration. Our data suggest that the BET inhibitor JQ1 can modulate the inflammatory response and migration through the regulation of LPS-induced IRF1 in human microglia.


Assuntos
Azepinas/farmacologia , Movimento Celular/efeitos dos fármacos , Inflamação/prevenção & controle , Microglia/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Triazóis/farmacologia , Linhagem Celular , Movimento Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Lipopolissacarídeos/farmacologia , Microglia/citologia , Microglia/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
15.
Sci Rep ; 11(1): 11799, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083693

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent and poorly responsive cancers worldwide. Bromodomain and extraterminal (BET) inhibitors, such as JQ1 and OTX-015, inhibit BET protein binding to acetylated residues in histones. However, the physiological mechanisms and regulatory processes of BET inhibition in HCC remain unclear. To explore BET inhibitors' potential role in the molecular mechanisms underlying their anticancer effects in HCC, we analyzed BET inhibitor-treated HCC cells' gene expression profiles with RNA-seq and bioinformatics analysis. BET inhibitor treatment significantly downregulated genes related to bromodomain-containing proteins 4 (BRD4), such as ACSL5, SLC38A5, and ICAM2. Importantly, some cell migration-related genes, including AOC3, CCR6, SSTR5, and SCL7A11, were significantly downregulated. Additionally, bioinformatics analysis using Ingenuity Knowledge Base Ingenuity Pathway Analysis (IPA) revealed that SMARCA4 regulated migration response molecules. Furthermore, knockdown of SMARCA4 gene expression by siRNA treatment significantly reduced cell migration and the expression of migration-related genes. In summary, our results indicated that BET inhibitor treatment in HCC cell lines reduces cell migration through the downregulation of SMARCA4.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/genética , DNA Helicases/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/genética , Proteínas Nucleares/genética , Proteínas/antagonistas & inibidores , Fatores de Transcrição/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Biologia Computacional/métodos , DNA Helicases/metabolismo , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Proteínas Nucleares/metabolismo , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
16.
Glycobiology ; 18(5): 395-407, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18316341

RESUMO

Ganglioside GM3 inhibits the growth of several cancer cells and induces cell cycle arrest by regulating cellular signal pathways. Our previous results have shown that GM3 suppresses tumor suppressor PTEN-mediated cancer cell proliferation. However, the precise molecular mechanism(s) for the transcriptional regulation of a PTEN gene induced by GM3 remains unclear. Here, we show, for the first time, that GM3 induces transcription factor AP-2alpha-mediated PTEN expression in colon cancer cells. The enhanced expression of PTEN by GM3 in both HCT116 and p53-null HCT116 cells has been shown to be not associated with p53 function. Thus, to further determine the mechanism underlying the regulation of PTEN gene expression by GM3, we characterized the promoter region of the PTEN gene. Promoter analysis of the 5'-flanking region of the PTEN gene showed that the region between -1175 and -1077 from the translational initiation site, which contains the AP-2alpha binding site, functions as the GM3-inducible promoter in colon cancer cells. Furthermore, gel shift assays, site-directed mutagenesis, and chromatin immunoprecipitation assay obviously indicated that the AP-2alpha is essential for the expression of PTEN in GM3-stimulated colon cancer cells. Moreover, siRNA against AP-2alpha diminished the enhancement of AP-2alpha and PTEN expressions in GM3-induced colon cancer cells. The transient expression of AP-2alpha also results in the induction of PTEN transcription in AP-2alpha-negative colon cancer cells. Additionally, GM3 induced AP-2alpha-mediated PTEN expression through the inhibition of autocrine-ligand-mediated EGFR activation. These results suggest that the AP-2alpha transcription factor is required for the ganglioside GM3-stimulated transcriptional regulation of the PTEN gene.


Assuntos
Gangliosídeo G(M3)/metabolismo , PTEN Fosfo-Hidrolase/genética , Fator de Transcrição AP-2/metabolismo , Ativação Transcricional , Sequência de Bases , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Genes erbB-1 , Humanos , Dados de Sequência Molecular , PTEN Fosfo-Hidrolase/metabolismo , Regiões Promotoras Genéticas , RNA Interferente Pequeno
17.
Biochem Biophys Res Commun ; 369(3): 845-8, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18325330

RESUMO

The cis-regulatory region of target genes is key elements in the transcriptional regulation of gene expression. Many of these cis-regulatory regions have not been identified by either biological experiments or computational methods. Recently, a few additional C(2)H(2) zinc finger transcription factor binding sites have been discovered. The majority of the zinc finger binding sites, however, are still unknown. In this study, we used publically available data to evaluate possible interaction patterns between nucleotides and the amino acids of zinc finger domains. We calculated the most probable state path of three nucleotides sequences using a Hidden Markov Model (HMM). We used these computations to predict C(2)H(2) zinc finger transcription factor binding sites in cis-regulatory regions of their target genes (http://bioinfo.hanyang.ac.kr/ZIFIBI/frameset.php).


Assuntos
Simulação por Computador , DNA/metabolismo , Modelos Biológicos , Fatores de Transcrição/metabolismo , Dedos de Zinco , Animais , Sequência de Bases , Sítios de Ligação , Biologia Computacional/métodos , DNA/química , Bases de Dados Genéticas , Humanos , Fatores de Transcrição/química
18.
Biomol Ther (Seoul) ; 26(3): 290-297, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401570

RESUMO

We aimed to understand the molecular changes in host cells that accompany infection by the seasonal influenza A H1N1 virus because the initial response rapidly changes owing to the fact that the virus has a robust initial propagation phase. Human epithelial alveolar A549 cells were infected and total RNA was extracted at 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h post infection (h.p.i.). The differentially expressed host genes were clustered into two distinct sets of genes as the infection progressed over time. The patterns of expression were significantly different at the early stages of infection. One of the responses showed roles similar to those associated with the enrichment gene sets to known 'gp120 pathway in HIV.' This gene set contains genes known to play roles in preventing the progress of apoptosis, which infected cells undergo as a response to viral infection. The other gene set showed enrichment of 'Drug Metabolism Enzymes (DMEs).' The identification of two distinct gene sets indicates that the virus regulates the cell's mechanisms to create a favorable environment for its stable replication and protection of gene metabolites within 8 h.

19.
Toxicol In Vitro ; 46: 66-76, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28986285

RESUMO

During the differentiation process, various epigenetic factors regulate the precise expression of important genes and control cellular fate. During this stage, the differentiating cells become vulnerable to external stimuli. Here, we used an early neural differentiation model to observe ethanol-mediated transcriptional alterations. Our objective was to identify important molecular regulators of ethanol-related alterations in the genome during differentiation. A transcriptomic analysis was performed to profile the mRNA expression in differentiating embryoid bodies with or without ethanol treatment. In total, 147 differentially expressed genes were identified in response to 50mM ethanol. Of these differentially expressed genes, 78 genes were up-regulated and 69 genes were down-regulated. Our analysis revealed a strong association among the transcript signatures of the important modulators which were involved in protein modification, protein synthesis and gene expression. Additionally, ethanol-mediated activation of DNA transcription was observed. We also profiled ethanol-responsive transcription factors (TFs), upstream transcriptional regulators and TF-binding motifs in the differentiating embryoid bodies. In this study, we established a platform that we hope will help other researchers determine the ethanol-mediated changes that occur during cellular differentiation.


Assuntos
Corpos Embrioides/efeitos dos fármacos , Etanol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , DNA/genética , Corpos Embrioides/metabolismo , Perfilação da Expressão Gênica , Humanos , Processamento de Proteína Pós-Traducional , RNA/genética , RNA/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição
20.
Front Immunol ; 9: 22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29403501

RESUMO

Macrophages are the prime innate immune cells of the inflammatory response, and the combination of multiple signaling inputs derived from the recognition of host factors [e.g., interferon-g (IFN-γ)] and invading pathogen products (e.g., toll-like receptors (TLRs) agonists) are required to maintain essential macrophage function. The profound effects on biological outcomes of inflammation associated with IFN-γ pretreatment ("priming") and TLR4 ligand bacterial lipopolysaccharide (LPS)-induced macrophage activation (M1 or classical activation) have long been recognized, but the underlying mechanisms are not well defined. Therefore, we analyzed gene expression profiles of macrophages and identified genes, transcription factors (TFs), and transcription co-factors (TcoFs) that are uniquely or highly expressed in IFN-γ-mediated TLR4 ligand LPS-inducible versus only TLR4 ligand LPS-inducible primary macrophages. This macrophage gene expression has not been observed in macrophage cell lines. We also showed that interleukin (IL)-4 and IL-13 (M2 or alternative activation) elicited the induction of a distinct subset of genes related to M2 macrophage polarization. Importantly, this macrophage gene expression was also associated with promoter conservation. In particular, our approach revealed novel roles for the TFs and TcoFs in response to inflammation. We believe that the systematic approach presented herein is an important framework to better understand the transcriptional machinery of different macrophage subtypes.


Assuntos
Células da Medula Óssea/imunologia , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Interferon gama/imunologia , Interleucina-13/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Receptor 4 Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa