Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 60(6): 1609-1614, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33690496

RESUMO

We propose an accurate and rapid azimuth calibration method for polarizing elements in ellipsometry. Over 200 calibrations were achieved simultaneously at different wavelength points in a spectral range of 550-650 nm without any calibrated element. The azimuth of the polarizer was determined from the differential spectral analysis on the ellipse azimuth of reflected light. The information of the ellipse azimuth is experimentally acquired in the spectral range by a rotating polarizing element and a spectrometer. The presented method was performed and verified with Si and Au bulk, respectively, showing reliability and feasibility for efficient and reliable calibration in ellipsometry.

2.
Opt Express ; 27(21): 30589-30596, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684303

RESUMO

In this work, we design a structure of metamaterials that consists of double sliver-ring resonators, in which highly-dispersive unidirectional reflectionlessness and absorption are achieved based on high-order plasmon resonance. Reflections of +z and -z directions at 461.34 THz (456.68 THz) are ∼0 (0.82) and ∼0.85 (0) when the distance d=222.9 nm (259.8 nm), respectively. High absorption of ∼0.97 and the quality factor of ∼435 can be obtained in the loss metal structure at room temperature. What's more, unidirectional reflectionlessness is investigated at low temperature.

3.
Nanotechnology ; 30(4): 045205, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30499459

RESUMO

Dual-band unidirectional reflectionlessness at exceptional points is investigated theoretically in a non-Hermitian plasmonic waveguide system, based on near-field coupling by using only two resonators. The system consists of a metal-insulator-metal waveguide end-coupled to two nanohole resonators. The reflectivity for the forward (backward) direction is ∼0 (∼0) at frequency 205.20 THz (194.56 THz), while for the backward (forward) direction it is ∼0.76 (∼0.78). Moreover, the quality factors of the dual-band unidirectional reflectionlessness for forward and backward directions can reach ∼132 and ∼137, respectively.

4.
Opt Express ; 26(4): 3839-3849, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475362

RESUMO

Unidirectional reflectionless phenomena are investigated theoretically in a non-Hermitian quantum system composed of several quantum dots and a plasmonic waveguide. By adjusting the phase shifts between quantum dots, single- and dual-band unidirectional reflectionlessnesses are realized at exceptional points based on two and three quantum dots coupled to a plasmonic waveguide, respectively. In addition, single- and dual-band unidirectional perfect absorptions with high quality factors are obtained at the vicinity of exceptional points.

5.
Opt Express ; 25(20): 24281-24289, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041373

RESUMO

Dual-band unidirectional reflectionlessness and coherent perfect absorption (CPA) are demonstrated in a non-Hermitian plasmonic waveguide system based on near-field coupling between a single resonator and the resonant modes of two resonators showing an electromagnetically induced-transparency-like (EIT-like) effect. The non-Hermitian plasmonic system consists of three metal-insulator-metal (MIM) resonators coupled to a MIM plasmonic waveguide.

6.
Opt Express ; 23(4): 3861-8, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836425

RESUMO

We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment. In simulation, the absorption was over 90% in 3.93-6.05 GHz, and 11.64-14.55 GHz. The corresponding experimental absorption bands over 90% were 3.88-6.08 GHz, 9.95-10.46 GHz and 11.86-13.84 GHz, respectively. The origin of absorption bands was elucidated. Furthermore, it is independent of polarization angle owing to the multilayered circular structures. The design is scalable to smaller size for the infrared and the visible ranges.

7.
Sci Rep ; 14(1): 10198, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702324

RESUMO

The absorption of electromagnetic waves in a broadband frequency range with polarization insensitivity and incidence-angle independence is greatly needed in modern technology applications. Many structures based on metamaterials have been suggested for addressing these requirements; these structures were complex multilayer structures or used special materials or external electric components, such as resistive ones. In this paper, we present a metasurface structure that was fabricated simply by employing the standard printed-circuit-board technique but provides a high absorption above 90% in a broadband frequency range from 12.35 to 14.65 GHz. The metasurface consisted of structural unit cells of 4 symmetric substructures assembled with a metallic bar pattern, which induced broadband absorption by using a planar resistive interaction in the pattern without a real resistive component. The analysis, simulation, and measurement results showed that the metasurface was also polarization insensitive and still maintained an absorption above 90% at incident angles up to 45°. The suggested metasurface plays a role in the fundamental design and can also be used to design absorbers at different frequency ranges. Furthermore, further enhancement of the absorption performance is achieved by improved design and fabrication.

8.
Opt Express ; 21(8): 9691-702, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23609678

RESUMO

We propose multi-band metamaterial absorbers at microwave frequencies. The design, the analysis, the fabrication, and the measurement of the absorbers working in multiple bands are presented. The numerical simulations and the experiments in the microwave anechoic chamber were performed. The metamaterial absorbers consist of an delicate arrangement of donut-shape resonators with different sizes and a metallic background plane, separated by a dielectric. The near-perfect absorptions of dual, triple and quad peaks are persistent with polarization independence, and the effect of angle of incidence for both TE and TM modes was also elucidated. It was also found that the multiple-reflection theory was not suitable for explaining the absorption mechanism of our investigated structures. The results of this study are promising for the practical applications.


Assuntos
Manufaturas , Modelos Teóricos , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Absorção , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Micro-Ondas , Espalhamento de Radiação
9.
Opt Express ; 21(26): 32484-90, 2013 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-24514841

RESUMO

We propose a dual-band metamaterial perfect absorber at microwave frequencies. Using a planar metamaterial, which consists of periodic metallic donut-shape meta-atoms at the front separated from the metallic plane at the back by a dielectric layer, we demonstrate the multi-plasmonic high-frequency perfect absorptions induced by the third-harmonic as well as the fundamental magnetic resonances. The origin of the induced multi-plasmonic perfect absorption was elucidated. It was also found that the perfect absorptions at dual peaks are persistent with varying polarization.

10.
Nanomaterials (Basel) ; 13(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770343

RESUMO

It is of great technological importance in the field of plasmonic color generation to establish and understand the relationship between optical responses and the reflectance of metallic nanoparticles. Previously, a series of indium nanoparticle ensembles were fabricated using electron beam evaporation and inspected using spectroscopic ellipsometry (SE). The multi-oscillator Lorentz-Drude model demonstrated the optical responses of indium nanoparticles with different sizes and size distributions. The reflectance spectra and colorimetry characteristics of indium nanoparticles with unimodal and bimodal size distributions were interpreted based on the SE analysis. The trends of reflectance spectra were explained by the transfer matrix method. The effects of optical constants n and k of indium on the reflectance were demonstrated by mapping the reflectance contour lines on the n-k plane. Using oscillator decomposition, the influence of different electron behaviors in various indium structures on the reflectance spectra was revealed intuitively. The contribution of each oscillator on the colorimetry characteristics, including hue, lightness and saturation, were determined and discussed from the reflectance spectral analysis.

11.
Opt Express ; 20(27): 28953-62, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23263136

RESUMO

Optical properties and thermal stability of the solar selective absorber based on the metal/dielectric four-layer film structure were investigated in the variable temperature region. Numerical calculations were performed to simulate the spectral properties of multilayer stacks with different metal materials and film thickness. The typical four-layer film structure using the transition metal Cr as the thin solar absorbing layer [SiO(2)(90nm)/Cr(10nm)/SiO(2)(80nm)/Al (≥100nm)] was fabricated on the Si or K9 glass substrate by using the magnetron sputtering method. The results indicate that the metal/dielectric film structure has a good spectral selective property suitable for solar thermal applications with solar absorption efficiency higher than 95% in the 400-1200nm wavelength range and a very low thermal emittance in the infrared region. The solar selective absorber with the thin Cr layer has shown a good thermal stability up to the temperature of 873K under vacuum atmosphere. The experimental results are in good agreement with the calculated spectral results.


Assuntos
Cromo/química , Membranas Artificiais , Nanopartículas/química , Energia Solar , Absorção , Cromo/efeitos da radiação , Transferência de Energia , Teste de Materiais , Nanopartículas/efeitos da radiação , Temperatura
12.
Opt Express ; 20(1): A28-38, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22379676

RESUMO

In order to overcome some physical limits, a solar system consisting of five single-junction photocells with four optical filters is studied. The four filters divide the solar spectrum into five spectral regions. Each single-junction photocell with the highest photovoltaic efficiency in a narrower spectral region is chosen to optimally fit into the bandwidth of that spectral region. Under the condition of solar radiation ranging from 2.4 SUN to 3.8 SUN (AM1.5G), the measured peak efficiency under 2.8 SUN radiation reaches about 35.6%, corresponding to an ideal efficiency of about 42.7%, achieved for the photocell system with a perfect diode structure. Based on the detailed-balance model, the calculated theoretical efficiency limit for the system consisting of 5 single-junction photocells can be about 52.9% under 2.8 SUN (AM1.5G) radiation, implying that the ratio of the highest photovoltaic conversion efficiency for the ideal photodiode structure to the theoretical efficiency limit can reach about 80.7%. The results of this work will provide a way to further enhance the photovoltaic conversion efficiency for solar cell systems in future applications.


Assuntos
Desenho Assistido por Computador , Fontes de Energia Elétrica , Filtração/instrumentação , Modelos Teóricos , Energia Solar , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
13.
Opt Express ; 19(22): 21652-7, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22109014

RESUMO

Using a planar metamaterial, which consists of two silver strips, we theoretically demonstrate the plasmonic electromagnetically-induced transparency (EIT)-like spectral response at optical frequencies. The two silver strips serve as the bright modes, and are excited strongly by the incident wave. Based on the weak hybridization between the two bright modes, a highly-dispersive plasmonic EIT-like spectral response appears in our scheme. Moreover, the group index is higher than that of another scheme which utilizes the strong coupling between the bright and dark modes.

14.
J Nanosci Nanotechnol ; 11(8): 7238-41, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22103166

RESUMO

We studied the influence of nanorod (NR) morphology on the optical confinement. In order to understand the optical field confinement by the ZnO NR, we obtained the spatial intensity distribution inside/outside the NR by solving Maxwell equations using the finite-difference time-domain numerical simulation. The hexagonal cylinder-shaped NR exhibits a strong confinement and the circular cylinder-shaped NR shows also similar confinement effect. Meanwhile, the rectangular cylinder-shaped NR, the tapered NR, and the NR with sharp cone show a weak confinement of optical field as compared to that of the hexagonal cylinder-shaped NR. Next, as the rod length and/or the rod diameter increase, the high intensity region increases. This suggests that longer nanorod will exhibit more efficient lasing action.

15.
Sci Rep ; 11(1): 1093, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441851

RESUMO

Unlike the single grating Czerny-Turner configuration spectrometers, a super-high spectral resolution optical spectrometer with zero coma aberration is first experimentally demonstrated by using a compound integrated diffraction grating module consisting of 44 high dispersion sub-gratings and a two-dimensional backside-illuminated charge-coupled device array photodetector. The demonstrated super-high resolution spectrometer gives 0.005 nm (5 pm) spectral resolution in ultra-violet range and 0.01 nm spectral resolution in the visible range, as well as a uniform efficiency of diffraction in a broad 200 nm to 1000 nm wavelength region. Our new zero-off-axis spectrometer configuration has the unique merit that enables it to be used for a wide range of spectral sensing and measurement applications.

16.
Opt Express ; 18(17): 17736-47, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20721160

RESUMO

We have studied electromagnetically induced transparency (EIT) in metamaterials for various schemes corresponding to those in an atomic medium. We numerically calculate a symmetric dolmen scheme of metamaterials corresponding to a tripod model of EIT-based optical switching and illustrate plasmonic double dark resonances. Our study provides a fundamental understanding and useful guidelines in using metamaterials for plasmonic-based all-optical information processing.


Assuntos
Manufaturas , Nanotecnologia/métodos , Óptica e Fotônica/métodos , Refratometria/métodos , Ressonância de Plasmônio de Superfície , Simulação por Computador , Modelos Teóricos , Radiação
17.
Opt Express ; 18(13): 13396-401, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20588469

RESUMO

A broken symmetry is generally believed to be a prerequisite for plasmonic electromagnetically-induced transparency (EIT), since the asymmetry allows the excitation of the otherwise forbidden dark mode. Nevertheless, according to the picture of magnetic plasmon resonance (MPR)-mediated plasmonic EIT, we show that plasmonic EIT can be achieved even in symmetric structures based on the second-order MPR. This not only sharpens our understanding of the existing concept, but also provides a profound insight into the plasmonic coherent interference in the near-field zone.


Assuntos
Magnetismo/métodos , Óptica e Fotônica/métodos , Teoria Quântica , Ressonância de Plasmônio de Superfície/métodos , Campos Eletromagnéticos
18.
Sci Rep ; 9(1): 12434, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455835

RESUMO

In this work, the two-dimensional profile of the light transmission through a prism-like metallic film sample of Au was measured at a wavelength of 632.8 nm in the visible intraband transition region to verify that, beyond the possible mechanisms of overcoming the diffraction limit, a strongly nonuniform optical absorption path length of the light traveling in the metal could induce a lensing effect, thereby narrowing the image of an object. A set of prism-like Au samples with different angles was prepared and experimentally investigated. Due to the nonuniform paths of the light traveling in the Au samples, lens-effect-like phenomena were clearly observed that reduced the imaged size of the beam spot with decreasing light intensity. The experimental measurements presented in the work may provide new insight to better understand the light propagation behavior at a metal/dielectric interface.

19.
Sci Rep ; 9(1): 10211, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308474

RESUMO

Optical spectrometers play a key role in acquiring rich photonic information in both scientific research and a wide variety of applications. In this work, we present a new spectrometer with an ultrahigh resolution of better than 0.012 nm/pixel in the 170-600 nm spectral region using a grating-integrated module that consists of 19 subgratings without any moving parts. By using two-dimensional (2D) backsideilluminated complementary metal-oxide-semiconductor (BSI-CMOS) array detector technology with 2048 × 2048 pixels, a high data acquisition speed of approximately 25 spectra per second is achieved. The physical photon-sensing size of the detector along the one-dimensional wavelength direction is enhanced by a factor of 19 to approximately 428 mm, or 38912 pixels, to satisfy the requirement of seamless connection between two neighboring subspectral regions without any missing wavelengths throughout the entire spectral region. As tested with a mercury lamp, the system has advanced performance capabilities characterized by the highest k parameter reported to date, being approximately 3.58 × 104, where k = (working wavelength region)/(pixel resolution). Data calibration and analysis as well as a method of reducing background noise more efficiently are also discussed. The results presented in this work will stimulate further research on precision spectrometers based on advanced BSI-CMOS array detectors in the future.

20.
Ultramicroscopy ; 108(10): 1066-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18562110

RESUMO

We present a systematic change of the magnetic domain structure with temperature in epitaxial ferromagnetic MnAs film on GaAs (001), observed in a wide temperature range of 15-45 degrees C by magnetic force microscopy. Interestingly, it is found that, as temperature increases, the domain structure within the ferromagnetic alpha-MnAs stripes shows a mixture of head-on and simple domains at 15 degrees C and then, takes a complete transition to simple ones above 15 degrees C. This change could be understood by change in the demagnetizing factor of the cross-section of the ferromagnetic stripes with temperature.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa