Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Infect Immun ; 90(9): e0024222, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35924898

RESUMO

To combat infections, hosts employ a combination of antagonistic and cooperative defense strategies. The former refers to pathogen killing mediated by resistance mechanisms, while the latter refers to physiological defense mechanisms that promote host health during infection independent of pathogen killing, leading to an apparent cooperation between the host and the pathogen. Previous work has shown that Leptin, a pleiotropic hormone that plays a central role in regulating appetite and energy metabolism, is indispensable for resistance mechanisms, while a role for Leptin signaling in cooperative host-pathogen interactions remains unknown. Using a mouse model of Yersinia pseudotuberculosis (Yptb) infection, an emerging pathogen that causes fever, diarrhea, and mesenteric lymphadenitis in humans, we found that the physiological effects of chronic Leptin-signaling deficiency conferred protection from Yptb infection due to increased host-pathogen cooperation rather than greater resistance defenses. The protection against Yptb infection was independent of differences in food consumption, lipolysis, or fat mass. Instead, we found that the chronic absence of Leptin signaling protects from a shift to lipid utilization during infection that contributes to Yptb lethality. Furthermore, we found that the survival advantage conferred by Leptin deficiency was associated with increased liver and kidney damage. Our work reveals an additional level of complexity for the role of Leptin in infection defense and demonstrates that in some contexts, in addition to tolerating the pathogen, tolerating organ damage is more beneficial for survival than preventing the damage.


Assuntos
Infecções por Yersinia pseudotuberculosis , Yersinia pseudotuberculosis , Interações Hospedeiro-Patógeno , Humanos , Leptina/metabolismo , Lipídeos , Yersinia pseudotuberculosis/metabolismo
3.
Nat Chem Biol ; 14(11): 1021-1031, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30327559

RESUMO

Fatty acid synthase (FASN) predominantly generates straight-chain fatty acids using acetyl-CoA as the initiating substrate. However, monomethyl branched-chain fatty acids (mmBCFAs) are also present in mammals but are thought to be primarily diet derived. Here we demonstrate that mmBCFAs are de novo synthesized via mitochondrial BCAA catabolism, exported to the cytosol by adipose-specific expression of carnitine acetyltransferase (CrAT), and elongated by FASN. Brown fat exhibits the highest BCAA catabolic and mmBCFA synthesis fluxes, whereas these lipids are largely absent from liver and brain. mmBCFA synthesis is also sustained in the absence of microbiota. We identify hypoxia as a potent suppressor of BCAA catabolism that decreases mmBCFA synthesis in obese adipose tissue, such that mmBCFAs are significantly decreased in obese animals. These results identify adipose tissue mmBCFA synthesis as a novel link between BCAA metabolism and lipogenesis, highlighting roles for CrAT and FASN promiscuity influencing acyl-chain diversity in the lipidome.


Assuntos
Tecido Adiposo/enzimologia , Aminoácidos de Cadeia Ramificada/metabolismo , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/biossíntese , Obesidade/enzimologia , Células 3T3 , Adipócitos/citologia , Animais , Sistemas CRISPR-Cas , Carnitina O-Acetiltransferase/metabolismo , Citosol/metabolismo , Feminino , Hipóxia , Lentivirus/genética , Lipogênese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , RNA Interferente Pequeno/metabolismo
4.
Cell Death Dis ; 14(4): 262, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041175

RESUMO

XIAP is a caspase-inhibitory protein that blocks several cell death pathways, and mediates proper activation of inflammatory NOD2-RIP2 signaling. XIAP deficiency in patients with inflammatory diseases such as Crohn's disease, or those needing allogeneic hematopoietic cell transplantation, is associated with a worse prognosis. In this study, we show that XIAP absence sensitizes cells and mice to LPS- and TNF-mediated cell death without affecting LPS- or TNF-induced NF-κB and MAPK signaling. In XIAP deficient mice, RIP1 inhibition effectively blocks TNF-stimulated cell death, hypothermia, lethality, cytokine/chemokine release, intestinal tissue damage and granulocyte migration. By contrast, inhibition of the related kinase RIP2 does not affect TNF-stimulated events, suggesting a lack of involvement for the RIP2-NOD2 signaling pathway. Overall, our data indicate that in XIAP's absence RIP1 is a critical component of TNF-mediated inflammation, suggesting that RIP1 inhibition could be an attractive option for patients with XIAP deficiency.


Assuntos
Lipopolissacarídeos , Transtornos Linfoproliferativos , Animais , Camundongos , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Transdução de Sinais , Fatores de Necrose Tumoral/metabolismo
5.
Sci Adv ; 7(5)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33514556

RESUMO

Maternal behavior is necessary for optimal development and growth of offspring. The intestinal microbiota has emerged as a critical regulator of growth and development in the early postnatal period life. Here, we describe the identification of an intestinal Escherichia coli strain that is pathogenic to the maternal-offspring system during the early postnatal stage of life and results in growth stunting of the offspring. However, rather than having a direct pathogenic effect on the infant, we found that this particular E. coli strain was pathogenic to the dams by interfering with the maturation of maternal behavior. This resulted in malnourishment of the pups and impaired insulin-like growth factor 1 (IGF-1) signaling, leading to the consequential stunted growth. Our work provides a new understanding of how the microbiota regulates postnatal growth and an additional variable that must be considered when studying the regulation of maternal behavior.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Animais Recém-Nascidos , Escherichia coli , Feminino , Humanos , Comportamento Materno
6.
Science ; 350(6260): 558-63, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26516283

RESUMO

Infections and inflammation can lead to cachexia and wasting of skeletal muscle and fat tissue by as yet poorly understood mechanisms. We observed that gut colonization of mice by a strain of Escherichia coli prevents wasting triggered by infections or physical damage to the intestine. During intestinal infection with the pathogen Salmonella Typhimurium or pneumonic infection with Burkholderia thailandensis, the presence of this E. coli did not alter changes in host metabolism, caloric uptake, or inflammation but instead sustained signaling of the insulin-like growth factor 1/phosphatidylinositol 3-kinase/AKT pathway in skeletal muscle, which is required for prevention of muscle wasting. This effect was dependent on engagement of the NLRC4 inflammasome. Therefore, this commensal promotes tolerance to diverse diseases.


Assuntos
Escherichia coli/imunologia , Inflamassomos/imunologia , Fator de Crescimento Insulin-Like I/metabolismo , Intestinos/microbiologia , Microbiota , Músculo Esquelético/metabolismo , Síndrome de Emaciação/imunologia , Síndrome de Emaciação/microbiologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Vias Biossintéticas , Burkholderia , Infecções por Burkholderia/complicações , Proteínas de Ligação ao Cálcio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Infecções por Salmonella/complicações , Salmonella typhimurium , Síndrome de Emaciação/etiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa