RESUMO
ConspectusNickel pincer systems have recently attracted much attention for applications in various organometallic reactions and catalysis involving small molecule activation. Their exploration is in part motivated by the presence of nickel in natural systems for efficient catalysis. Among such systems, the nickel-containing metalloenzyme carbon monoxide dehydrogenase (CODH) efficiently and reversibly converts CO2 to CO at its active site. The generated CO moves through a channel from the CODH active site and is transported to a dinuclear nickel site of acetyl-coenzyme A synthase (ACS), which catalyzes organometallic C-S and C-C bond forming reactions. An analogous C-S bond activation process is also mediated by the nickel containing enzyme methyl-coenzyme M reductase (MCR). The nickel centers in these systems feature sulfur- and nitrogen-rich environments, and in the particular case of lactate racemase, an organometallic nickel pincer motif revealing a Ni-C bond is observed. These bioinorganic systems inspired the development of several nickel pincer scaffolds not only to mimic enzyme active sites and their reactivity but also to further extend low-valent organonickel chemistry. In this Account, we detail our continuing efforts in the chemistry of nickel complexes supported by acridane-based PNP pincer ligands focusing on our long-standing interest in biomimetic small molecule activation. We have employed a series of diphosphinoamide pincer ligands to prepare various nickel(II/I/0) complexes and to study the conversion of C1 chemicals such as CO and CO2 to value-added products. In the transformation of C1 chemicals, the key C-O bond cleavage and C-E bond (E = C, N, O, or S, etc.) formation steps typically require overcoming high activation barriers. Interestingly, enzymatic systems overcome such difficulties for C1 conversion and operate efficiently under ambient conditions with the use of nickel organometallic chemistry. Furthermore, we have extended our efforts to the conversion of NOx anions to NO via the sequential deoxygenation by nickel mediated carbonylation, which was applied to catalytic C-N coupling to produce industrially important organonitrogen compound oximes as a strategy for NOx conversion and utilization (NCU). Notably, the rigidified acriPNP pincer backbone that enforces a planar geometry at nickel was found to be an important factor for diversifying organometallic transformations including (a) homolysis of various σ-bonds mediated by T-shaped nickel(I) metalloradical species, (b) C-H bond activation mediated by a nickel(0) dinitrogen species, (c) selective CO2 reactivity of nickel(0)-CO species, (d) C-C bond formation at low-valent nickel(I or 0)-CO sites with iodoalkanes, and (e) catalytic deoxygenation of NOx anions and subsequent C-N coupling of a nickel-NO species with alkyl halides for oxime production. Broadly, our results highlight the importance of molecular design and the rich chemistry of organonickel species for diverse small molecule transformations.
RESUMO
This study demonstrated that NiO and Ni(OH)2 as Ni(II) catalysts exhibited significant activity for organic oxidation in the presence of various oxyanions, such as hypochlorous acid (HOCl), peroxymonosulfate (PMS), and peroxydisulfate (PDS), which markedly contrasted with Co-based counterparts exclusively activating PMS to yield sulfate radicals. The oxidizing capacity of the Ni catalyst/oxyanion varied depending on the oxyanion type. Ni catalyst/PMS (or HOCl) degraded a broad spectrum of organics, whereas PDS enabled selective phenol oxidation. This stemmed from the differential reactivity of two high-valent Ni intermediates, Ni(III) and Ni(IV). A high similarity with Ni(III)OOH in a substrate-specific reactivity indicated the role of Ni(III) as the primary oxidant of Ni-activated PDS. With the minor progress of redox reactions with radical probes and multiple spectroscopic evidence on moderate Ni(III) accumulation, the significant elimination of non-phenolic contaminants by NiOOH/PMS (or HOCl) suggested the involvement of Ni(IV) in the substrate-insensitive treatment capability of Ni catalyst/PMS (or HOCl). Since the electron-transfer oxidation of organics by high-valent Ni species involved Ni(II) regeneration, the loss of the treatment efficiency of Ni/oxyanion was marginal over multiple catalytic cycles.
Assuntos
Níquel , Oxirredução , Níquel/química , Catálise , Ânions , Compostos Orgânicos/química , Peróxidos/química , Ácido Hipocloroso/químicaRESUMO
Halogenated methyl parabens are formed readily during water chlorination, with or without bromide ion presence. However, research gaps persist in in vivo toxicological assessments of vertebrates exposed to halo-MePs. To address this gap, this study evaluated acute toxicities at 24-96 h-post-fertilization in zebrafish embryos exposed to methyl paraben and its mono- or di-halogenated derivatives, using various apical endpoints. Significant enhanced toxic effects were confirmed for halo-MePs compared to MeP on embryo coagulation (3-19 fold), heartbeat rate decrement (11-80 fold), deformity rate increment (9-68 fold), and hatching failure (4-33 fold), with parentheses indicating the determined toxic potency ratios. Moreover, halo-MePs showed a significantly higher increase in biochemical levels of reactive oxygen species, catalase, superoxide dismutase, and malondialdehyde, while acetylcholinesterase activity was inhibited compared to NT and MeP. The experimental toxic potencies (log(1/EC50 or LC50)) were compared with the predicted ones (log(1/EC50 or LC50, baseline)) using the baseline toxicity Quantitative Structure-Activity Relationship previously established for zebrafish embryos. Halo-MePs were specific (or reactive) toxicants based on their toxic ratios of more than 10 for apical endpoints including heartbeat rate, deformity rate, and hatching rate, while MeP acted as a baseline toxicant. Overall, this study presents the comprehensive toxicological assessment of halo-MePs in zebrafish embryos, contributing to an essential in vivo toxicity database for halogenated phenolic contaminants in aquatic ecosystems.
RESUMO
Nitrogen oxides (NOx) are major environmental pollutants and to neutralize this long-term environmental threat, new catalytic methods are needed. Although there are biological denitrification processes involving four different enzymatic reactions to convert nitrate (NO3 -) into dinitrogen (N2), it is unfortunately difficult to apply in industry due to the complexity of the processes. In particular, nitrate is difficult to functionalize because of its chemical stability. Thus, there is no organometallic catalysis to convert nitrate into useful chemicals. Herein, we present a nickel pincer complex that is effective as a bifunctional catalyst to stepwise deoxygenate NO3 - by carbonylation and further through C-N coupling. By using this nickel catalysis, nitrate salts can be selectively transformed into various oximes (>20 substrates) with excellent conversion (>90 %). Here, we demonstrate for the first time that the highly inert nitrate ion can be functionalized to produce useful chemicals by a new organonickel catalysis. Our results show that the NOx conversion and utilization (NCU) technology is a successful pathway for environmental restoration coupled with value-added chemical generation.
RESUMO
Cationic amphipathic structures are often utilized in natural membrane-active host-defense peptides. Negatively charged surface membranes of rapidly proliferating bacterial and cancer cells have been targeted by various synthetic peptides and peptidomimetics adopting the structural motif. Herein, we synthesized a set of conjugates composed of cationic amphipathic peptoids (i.e., oligo-N-substituted glycines) and a chlorin photosensitizer, named chlorin e6 (Ce6)-peptoid conjugates (CPCs). Among the nine CPCs, CPC 7, composed of Ce6, a PEG linker, and guanidine-rich helical amphipathic peptoids, exhibited a distinct photoresponsive inactivation of Gram-positive and Gram-negative bacteria. Subsequent studies showed that CPC 7 effectively killed various cancer cells after irradiation with red light (655 nm), suggesting the potential of CPC 7 as a dual antimicrobial and anticancer agent. Confocal laser scanning microscopy and flow cytometry data suggested that CPC 7 could induce apoptotic cell death. Our results show the potential of peptoid-based photosensitizer conjugates as a versatile platform for antimicrobial and anticancer photodynamic therapy agents and peptoid therapeutics.
Assuntos
Anti-Infecciosos , Antineoplásicos , Clorofilídeos , Peptoides , Fotoquimioterapia , Porfirinas , Peptoides/farmacologia , Peptoides/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Antibacterianos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Fotoquimioterapia/métodos , Peptídeos/química , Anti-Infecciosos/química , Antineoplásicos/farmacologia , Porfirinas/farmacologia , Porfirinas/químicaRESUMO
A phosphide nickel(II) phenoxide pincer complex (2) reacts with CO(g) to give a pseudo-tetrahedral nickel(0) monocarbonyl complex (3) possessing a phosphinite moiety. This metal-ligand cooperative (MLC) transformation occurs with a (PPP)Ni scaffold (PPP- = P[2-PiPr2-C6H4]2-), which can accommodate both square planar and tetrahedral geometries. The 2-electron reduction of a nickel(II) species induced by CO coordination involves group transfer to generate a P-O bond. For better mechanistic understanding, a series of nickel(II) phenolate complexes (2a-2e, XC6H4O- (X = OMe, Me, H, and CF3) and pentafluorophenolate) were prepared. Kinetic experimental data reveal that a phenolate species with an electron-withdrawing group reacts faster than those with electron-donating groups. The reaction kinetic experiments were conducted in pseudo-first order conditions at room temperature monitored by UV-vis spectroscopy. A pentafluorophenolate nickel(II) complex (2e) reveals instantaneous reactions even at -40 °C to give a nickel(0) monocarbonyl species (3e) and the reverse reaction is also possible. According to kinetic experiments, the rate determining step (RDS) would be the formation of a 5-coordinate intermediate 4 with a negative entropy value (ΔS < 0), and a positive ρ value based on the Hammett plot indicates that the electron-deficient phenolate leads to a faster CO association. Furthermore, scramble experiments suggest that phenolate de-coordinates from the intermediate 4, which gives a (PPP)Ni-CO species 6. The cationic nickel monocarbonyl intermediate can possess a P--Ni(II), Pâ¢-Ni(I), or even a P+-Ni(0) character. Such an inner-sphere electron transfer is suggested when a π-acidic ligand such as CO coordinates to a metal ion. Another possible reaction is homolysis of a Ni-O bond to give P--Ni(I) or Pâ¢-Ni(0), when a phenoxyl radical is liberated. Considering the P-O bond formation, closed-shell nucleophilic and open-shell radical pathways are suggested. A phenolate pathway reveals a lower energy state for 2e relative to other complexes (2c and 2d), while its radical pathway undergoes via a higher energy state. Therefore, the formation of a P-O bond may occur with the binding of a closed-shell phenolate to the electron-deficient P center.
RESUMO
The synthesis and characterization of a series of nickel complexes bearing a bismuth-containing pincer ligand are presented herein. In particular, synthesis of a 4-coordinate Bi-Ni(II) complex allows the influence of bismuth on a d8 Ni(II) ion to be investigated. A trigonal-bipyramidal complex, (BiP2)Ni(PPh) (1), possessing an anionic bismuth donor was prepared via the Bi-C bond cleavage of a BiP3 ligand (BiP3 = Bi(o-PiPr2-C6H4)3) mediated by Ni(0). To remove a PPh moiety, compound 1 was treated with MeI to give a 5-coordinate nickel(II) complex (MeBiP2)Ni(PPh)(I) (2), followed by its exposure to heat or UV irradiation, resulting in the formation of a nickel halide complex, (BiP2)Ni(I) (3). The X-ray crystal structure of 2 revealed that the methyl moiety binds to a bismuth site, providing a neutral MeBiP2 ligand, while the iodide anion is bound to the nickel(II) center, displacing one phosphine donor. Because of the methylation on a Bi site, the Bi-Ni bond in 2 is clearly elongated relative to that of 1, which indicates that the bonding interactions between Bi and Ni are substantially different. Interestingly, compound 3 revealing a sawhorse geometry is significantly distorted away from a square-planar structure compared to the previously reported nickel(II) pincer complexes, (NP2)Ni(Cl) and (PP2)Ni(I). Such difference indicates that a bismuth donor can be a structurally influencing cooperative site for a nickel(II) ion, leading to have a Ni(I)-Bi(II) character. Migratory insertion of CO into a Ni-C bond of 1 gives (BiP2)Ni(COPPh) (4), which further leads to an analogous methylated product (MeBiP2)Ni(COPPh)(I) (5) from reaction with MeI. Due to the structural influence of a carbonyl group in each step, the total reaction time from 1 to 3 was dramatically reduced. The bimetallic cooperativity of the complexes and unusual bonding properties presented here highlight the potential of a bismuth-nickel moiety as a new type of heterobimetallic site for the design of bimetallic complexes to facilitate a variety of chemical transformations.
RESUMO
Ferrate (Fe(VI)) is a novel oxidant that can be used to mitigate disinfection byproduct (DBP) precursors. However, the reaction of Fe(VI) with organic nitrogen, which is a potential precursor of potent nitrogenous DBPs, remains largely unexplored. The present work aimed to identify the kinetics and products for the reaction of Fe(VI) with primary amines, notably amino acids. A new kinetic model involving ionizable intermediates was proposed and can describe the unusual pH effect on the Fe(VI) reactivity toward primary amines and amino acids. The Fe(VI) oxidation of phenylalanine produced a mixture of nitrile, nitrite/nitrate, amide, and ammonia, while nitroalkane was an additional product in the case of glycine. The product distribution for amino acids significantly differed from that of uncarboxylated primary amines that mainly generate nitriles. A general reaction pathway for primary amines and amino acids was proposed and notably involved the formation of imines, the degradation of which was affected by the presence of a carboxylic group. In comparison, ozonation led to higher yields of nitroalkanes that could be readily converted to potent halonitroalkanes during chlor(am)ination. Based on this study, Fe(VI) can effectively mitigate primary amine-based, nitrogenous DBP precursors with little formation of toxic halonitroalkanes.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Aminas , Aminoácidos , Oxirredução , Oxidantes/química , Nitrogênio , Cinética , Poluentes Químicos da Água/análiseRESUMO
Electronic waste (e-waste) is the world's fastest-growing type of waste, with lighting accounting for 9% of the total. Light-emitting diodes (LEDs) are composed of the most concentrated critical elements (Ag and Au) and recovery of these metals could generate economic benefits and reduce the burdens of environmental pollution; nevertheless, the absence of information about their composition currently presents a challenge in recycling these metals with minimal prospects for recovery. This study assessed the distribution and variation of elemental concentrations of 16 different elements in three generations of LEDs (12 different LED units): sub-mounted-device (SMD #10), chip-on-board (COB #1), and positive-intrinsic-negative (PIN #1). The SMD LEDs contained a considerable amount of Au with a median average concentration of 1204 mg/kg (ranging from 323 - 3687 mg/kg), which was similar to that of COB (1550 mg/kg), but higher than that of PIN LED (175 mg/kg). Based on the total threshold limiting concentration (TTLC), the Cu levels (605,823 mg/kg) in the SMD package exceeded the regulatory limits (2500 mg/kg). Concentrations of the hazardous elements Cr (29 mg/kg), Pb (12 mg/kg), Cd (0.1 mg/kg), and As (1 mg/kg) in the LED packages were within the regulatory limits. To recycle precious metals and other technological metals, a well-organized and dedicated optimized assessment of the value of metals is required especially in accordance with the concept of criticality and recyclability. Two factors, i.e., a high resource index (RI) and technology index (TI), suggest the importance of waste to the economy and has a significant potential for recycling with less processing burdens. Present findings indicated that the COB and a few of the studied SMD LEDs (3020, 4014, 5630, and 7020), exhibit high criticality and recyclability. For the RI and TI index, the contribution of metals such as Cu, Fe, Al, and Au were dominant. These findings can serve as a reference for the development of a viable approach for the recycling and recovery of targeted metals from LED e-waste.
Assuntos
Resíduo Eletrônico , Metais , Reciclagem , Resíduo Eletrônico/análiseRESUMO
We introduce a novel cyclic ß-amino acid, trans-(3S,4R)-4-aminotetrahydrothiophene-3-carboxylic acid (ATTC), as a versatile building block for designing peptide foldamers with controlled secondary structures. We synthesized and characterized a series of ß-peptide hexamers containing ATTC using various techniques, including X-ray crystallography, circular dichroism, and NMR spectroscopy. Our findings reveal that ATTC-containing foldamers can adopt 12-helical conformations similar to their isosteres and offer the possibility of fine-tuning their properties via post-synthetic modifications. In particular, chemoselective conjugation strategies demonstrate that ATTC provides unique post-synthetic modification opportunities, which expand their potential applications across diverse research areas. Collectively, our study highlights the versatility and utility of ATTC as an alternative to previously reported cyclic ß-amino acid building blocks in both structural and functional aspects, paving the way for future research in the realm of peptide foldamers and beyond.
Assuntos
Peptídeos , Sulfetos , Peptídeos/química , Estrutura Secundária de Proteína , Espectroscopia de Ressonância Magnética , Aminoácidos/química , Cristalografia por Raios XRESUMO
Nitrogen oxide (NOx) conversion is an important process for balancing the global nitrogen cycle. Distinct from the biological NOx transformation, we have devised a synthetic approach to this issue by utilizing a bifunctional metal catalyst for producing value-added products from NOx. Here, we present a novel catalysis based on a Ni pincer system, effectively converting Ni-NOx to Ni-NO via deoxygenation with CO(g). This is followed by transfer of the in situ generated nitroso group to organic substrates, which favorably occurs at the flattened Ni(I)-NO site via its nucleophilic reaction. Successful catalytic production of oximes from benzyl halides using NaNO2 is presented with a turnover number of >200 under mild conditions. In a key step of the catalysis, a nickel(I)-â¢NO species effectively activates alkyl halides, which is carefully evaluated by both experimental and theoretical methods. Our nickel catalyst effectively fulfills a dual purpose, namely, deoxygenating NOx anions and catalyzing C-N coupling.
Assuntos
Níquel , CatáliseRESUMO
The reductive carbonylation of nitroarenes in the presence of MeOH and CO(g) is one of the interesting alternative routes without utilizing toxic phosgene and corrosive HCl generation for the synthesis of industrially useful carbamate compounds that serve as important intermediates for polyurethane production. Since homogeneous palladium catalysts supported by phen (phen = 1,10-phenanthroline) are known to be effective for this catalysis, the heterogenized Pd catalyst was developed using the phen-containing solid support. In this study, we report the synthesis of a phen-based heterogeneous Pd catalyst, Pd@phen-POP, which involves the solvent knitting of a phen scaffold via the Lewis-acid-catalyzed Friedel-Crafts reaction using dichloromethane as a source for linker in the presence of AlCl3 as a catalyst. The resulting solid material has been thoroughly characterized by various physical methods revealing high porosity and surface area. Similar to the homogeneous pallidum catalyst, this heterogeneous catalyst shows efficient reductive carbonylation of various nitroarenes. The catalytic reaction using nitrobenzene as a model compound presents a high turnover number (TON = 530) and a reasonable turnover frequency (TOF = 45 h-1), with a high selectivity (92%) for the carbamate formation. According to the recycling study, the heterogeneous catalyst is recyclable and retains â¼90% of the original reactivity in each cycle.
RESUMO
This study investigated antibiotic resistance gene (ARG) degradation kinetics in wastewaters during bench- and full-scale treatment with UV light and chlorineâwith the latter maintained as free available chlorine (FAC) in low-ammonia wastewater and converted into monochloramine (NH2Cl) in high-ammonia wastewater. Twenty-three 142-1509 bp segments (i.e., amplicons) of seven ARGs (blt, mecA, vanA, tet(A), ampC, blaNDM, blaKPC) and the 16S rRNA gene from antibiotic resistant bacteria (ARB) strains Bacillus subtilis, Staphylococcus aureus, Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae were monitored as disinfection targets by qPCR. Rate constants for ARG and 16S rRNA gene amplicon degradation by UV, FAC, and NH2Cl were measured in phosphate buffer and used to expand and validate several recently developed approaches to predict DNA segment degradation rate constants based solely on their nucleotide contents, which were then applied to model ARG degradation during bench-scale treatment in buffer and wastewater matrixes. Kinetics of extracellular and intracellular ARG degradation by UV and FAC were well predicted up to â¼1-2-log10 elimination, although with decreasing accuracy at higher levels for intracellular genes, while NH2Cl yielded minimal degradation under all conditions (agreeing with predictions). ARB inactivation kinetics varied substantially across strains, with intracellular gene degradation lagging cell inactivation in each case. ARG degradation levels observed during full-scale disinfection at two wastewater treatment facilities were consistent with bench-scale measurements and predictions, where UV provided â¼1-log10 ARG degradation, and chlorination of high-ammonia wastewater (dominated by NH2Cl) yielded minimal ARG degradation.
Assuntos
Cloro , Purificação da Água , Águas Residuárias/microbiologia , Desinfecção , Raios Ultravioleta , RNA Ribossômico 16S , Nucleotídeos , Amônia , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Escherichia coli , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologiaRESUMO
Metal-coordinated frameworks derived from small peptidic ligands have received much attention thanks to peptides' vast structural and functional diversity. Various peptides with partial conformational preferences have been used to build metal-peptide frameworks, however, the use of conformationally constrained ß-peptide foldamers has not been explored yet. Herein we report the first metal-coordination-mediated assembly of ß-peptide foldamers with 12-helical folding propensity. The coordination of Ag+ to the terminal pyridyl moieties afforded a set of metal-peptide frameworks with unique entangled topologies. Interestingly, formation of the network structures was accompanied by notable conformational distortions of the foldamer ligands. As the first demonstration of new metal-peptide frameworks built from modular ß-peptide foldamers, we anticipate that this work will be an important benchmark for further structural evolution and mechanistic investigation.
Assuntos
Estruturas Metalorgânicas/química , Peptídeos/química , Prata/química , Modelos Moleculares , Conformação MolecularRESUMO
Square pyramidal cobalt complexes were prepared to study their multielectron redox properties. To build a stable redox-active cobalt complex, the combination of a tridentate acriPNP (acriPNP- = 4,5-bis(diisopropylphosphino)-2,7,9,9-tetramethyl-9H-acridin-10-ide) ligand with a bidentate ligand, such as 2,2'-bipyridine, 2-(o-phenyl)pyridine, biphenylene, and their analogues, was employed. In a cobalt complex having a tetragonal structure, the dx2-y2 orbital possesses an antibonding character and must remain empty for its structural integrity, while the dz2 orbital acts as a redox-active frontier molecular orbital (FMO). Tuning the redox potential of the Co(II/I) couple was successfully achieved by introducing a different axial donor. The reduction of Co(II) to Co(I) occurs at -2.6 V for a neutral donor but shifts to -3.4 V for an anionic donor. Since the redox-active dz2 orbital is close in energy to other ligand-based orbitals, multielectron redox activity is also observed. Electrochemical measurements indicate three reversible redox events within a window of -3.0-0.0 V vs Fc/Fc+ in tetrahydrofuran (THF). These redox processes are fully reversible for over 100 cycles, reflecting the electrochemical stability of these cobalt complexes. Surprisingly, the oxidation potential of the acriPNP ligand varies dramatically from +0.15 to -2.4 V, which is probably due to the cobalt contribution on the amido-based molecular orbital. The electronic structure of the cobalt complexes was examined structurally, spectroscopically, and theoretically.
RESUMO
Multitarget engagement is considered an effective strategy to overcome the threat of bacterial infection, and antimicrobials with multiple mechanisms of action have been successful as natural chemical weaponry. Here, we synthesized a library of photosensitizer-peptoid conjugates (PsPCs) as novel antimicrobial photodynamic therapy (aPDT) agents. The peptoids, linkers, and photosensitizers were varied, and their structure-antimicrobial activity relationships against Escherichia coli were evaluated; PsPC 9 was indicated to be the most promising photoresponsive antimicrobial agent among the synthesized PsPCs. Spectroscopic analyses indicated that 9 generated singlet oxygen upon absorption of visible light (420 nm) while maintaining the weakly helical conformation of the peptoid. Mechanistic studies suggested that damage to the bacterial membrane and cleavage of DNA upon light irradiation were the main causes of bactericidal activity, which was supported by flow cytometry and DNA gel electrophoresis experiments. We demonstrated that the optimal combination of membrane-active peptoids and photosensitizers can generate an efficient aPDT agent that targets multiple sites of bacterial components and kills bacteria by membrane disruption and reactive oxygen species generation.
Assuntos
Fármacos FotossensibilizantesRESUMO
Degradation kinetics of antibiotic resistance genes (ARGs) by free available chlorine (FAC), ozone (O3), and UV254 light (UV) were investigated in phosphate buffered solutions at pH 7 using a chromosomal ARG (mecA) of methicillin-resistant Staphylococcus aureus (MRSA). For FAC, the degradation rates of extracellular mecA (extra-mecA) were accelerated with increasing FAC exposure, which could be explained by a two-step FAC reaction model. The degradation of extra-mecA by O3 followed second-order reaction kinetics. The degradation of extra-mecA by UV exhibited tailing kinetics, which could be described by a newly proposed kinetic model considering cyclobutane pyrimidine dimer (CPD) formation, its photoreversal, and irreversible (6-4) photoproduct formation. Measured rate constants for extra-mecA increased linearly with amplicon length for FAC and O3, or with number of intrastrand pyrimidine doublets for UV, which enabled prediction of degradation rate constants of extra-mecA amplicons based on sequence length and/or composition. In comparison to those of extra-mecA, the observed degradation rates of intracellular mecA (intra-mecA) were faster for FAC and O3 at low oxidant exposures but significantly slower at high exposures for FAC and UV. Differences in observed extra- and intracellular kinetics could be due to decreased DNA recovery efficiency and/or the presence of MRSA aggregates protected from disinfectants.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Ozônio , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Cloro , Desinfecção , Resistência Microbiana a Medicamentos , Cinética , Staphylococcus aureus Resistente à Meticilina/genética , Raios Ultravioleta , ÁguaRESUMO
Ultraviolet (UV) radiation alone or in combination with other oxidation processes is increasingly being considered for water disinfection because of stringent regulatory requirements for pathogen inactivation. To fulfill this requirement, an appropriate UV dose or fluence (mJ/cm2) is applied to combat enteric viruses in surface or treated water. There is a need for a cumulative review on the effectiveness of current and emerging UV technologies against various types of human enteric viruses. We extracted the kinetics data from 52 selected experimental studies on enteric virus inactivation using low pressure (LP-UV), medium pressure (MP-UV), UV-LED, and advanced oxidation processes (AOPs) and applied a simple linear regression analysis to calculate the range of UV fluence (mJ/cm2) needed for 4-log10 inactivation. The inactivation of adenoviruses with LP-UV, MP-UV, and UV/H2O2 (10 mg/L) required the highest fluence, which ranged from 159 to 337, 45, and 115 mJ/cm2, respectively. By contrast, when using LP-UV, the inactivation of other enteric viruses, such as the Caliciviridae and Picornaviridae family and rotavirus, required fluence that ranged from 19 to 69, 18 to 43, and 38 mJ/cm2, respectively. ssRNA viruses exhibit higher sensitivity to UV radiation than dsRNA and DNA viruses. In general, as an upgrade to LP-UV, MP-UV is a more promising strategy for eliminating enteric viruses compared to AOP involving LP-UV with added H2O2 or TiO2. The UV-LED technology showed potential because a lower UV fluence (at 260 and/or 280 nm wavelength) was required for 4-log10 inactivation compared to that of LP-UV for most strains examined in this critical review. However, more studies evaluating the inactivation of enteric viruses by means of UV-LEDs and UV-AOP are needed to ascertain these observations.
Assuntos
Vírus , Purificação da Água , Desinfecção , Humanos , Peróxido de Hidrogênio , Raios Ultravioleta , Inativação de Vírus , ÁguaRESUMO
A series of σ-SiH copper complexes with different carbazole derivatives have been synthesized and characterized that adopt a neutral SiHP2 ligand (SiHP2 = (2-iPr2PC6H4)2SiHMe) and present photophysical properties. A previously reported copper complex (SiHP2)Cu(carbazolide), and its derivatives showed that tuning of the emission properties is possible by incorporating various substituents on the carbazolide moiety. Newly synthesized copper complexes (2-6) having 3,6-dichlorocarbazolide, 3,6-dibromocarbazolide, 1-fluorocarbazolide, 3,6-dimethylcarbazolide, and 3,6-diphenylcarbazolide show a range of λmax values of emission from 418 to 511 nm. Detailed analysis supports that their emission bands originate from excited states with Cu metal-ligand charge transfer (MLCT) and/or ligand-centered (LC) π-π* transitions. Substitution of a methyl or trifluoromethyl group at the 1-position of the carbazolide moiety was also investigated to regulate the structural tuning of the copper emitters. From the X-ray crystallographic data of (SiHP2)Cu(1-methylcarbazolide) (7) and (SiHP2)Cu(1,3-di(trifluoromethyl)carbazolide) (8), unusual structural features, arising from the interaction of a SiH moiety with CH3 and CF3, respectively, were recognized. Such interaction forces the carbazolide moiety to tilt, while the copper geometry remains consistent with the other complexes. In the case of 8, a SiH···F3C interaction locks the carbazolide moiety in place, restricting its orbital overlapping with a copper-based orbital, according to the theoretical analysis by using density functional theory (DFT) computations. Thus, the unusual tilting results in deep-blue emission with a λmax of 430 nm.
RESUMO
This study investigated the UV254 photolysis of free available chlorine and bromine species in water. The intrinsic quantum yields for â¢OH and X⢠(X = Cl or Br) generation were determined by model fitting of formaldehyde formation using a tert-butanol assay to be 0.61/0.45 for HOCl/OCl- and 0.32/0.43 for HOBr/OBr-. The steady-state â¢OH concentration in UV/HOX was higher than that in UV/OX- by a factor of 23.3 and 7.8 for Cl and Br, respectively. This was attributed to the different â¢OH consumption rate by HOCl versus OCl-, while for HOBr/OBr-, both the â¢OH formation and consumption rates were implied. This was supported by a k of 1.4 × 108 M-1 s-1 for the â¢OH reaction with HOCl, which was >14 times less than the k for â¢OH reactions with OCl-, HOBr, and OBr-. Formation of ClO3- and BrO3- was found to be significant with apparent quantum yields of 0.12-0.23. A detailed mechanistic study on the formation of XO3- including a new pathway involving XO⢠is presented, which has important implications as the level of XO3- can exceed the regulation (BrO3-) or guideline (ClO3-) values during UV/halogen oxidant water treatment. Our new kinetic models well simulate the experimental results for the halogen oxidant decomposition, probe compound degradation, and formation of ClO3- and BrO3-.