Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Methods ; 18(8): 945-952, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34354290

RESUMO

Acoustic reporter genes (ARGs) that encode air-filled gas vesicles enable ultrasound-based imaging of gene expression in genetically modified bacteria and mammalian cells, facilitating the study of cellular function in deep tissues. Despite the promise of this technology for biological research and potential clinical applications, the sensitivity with which ARG-expressing cells can be visualized is currently limited. Here we present burst ultrasound reconstructed with signal templates (BURST)-an ARG imaging paradigm that improves the cellular detection limit by more than 1,000-fold compared to conventional methods. BURST takes advantage of the unique temporal signal pattern produced by gas vesicles as they collapse under acoustic pressure above a threshold defined by the ARG. By extracting the unique pattern of this signal from total scattering, BURST boosts the sensitivity of ultrasound to image ARG-expressing cells, as demonstrated in vitro and in vivo in the mouse gastrointestinal tract and liver. Furthermore, in dilute cell suspensions, BURST imaging enables the detection of gene expression in individual bacteria and mammalian cells. The resulting abilities of BURST expand the potential use of ultrasound for non-invasive imaging of cellular functions.


Assuntos
Escherichia coli/genética , Trato Gastrointestinal/metabolismo , Genes Reporter/genética , Fígado/metabolismo , Imagens de Fantasmas , Imagem Individual de Molécula/métodos , Ultrassonografia/métodos , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C
2.
Nature ; 553(7686): 86-90, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29300010

RESUMO

The mammalian microbiome has many important roles in health and disease, and genetic engineering is enabling the development of microbial therapeutics and diagnostics. A key determinant of the activity of both natural and engineered microorganisms in vivo is their location within the host organism. However, existing methods for imaging cellular location and function, primarily based on optical reporter genes, have limited deep tissue performance owing to light scattering or require radioactive tracers. Here we introduce acoustic reporter genes, which are genetic constructs that allow bacterial gene expression to be visualized in vivo using ultrasound, a widely available inexpensive technique with deep tissue penetration and high spatial resolution. These constructs are based on gas vesicles, a unique class of gas-filled protein nanostructures that are expressed primarily in water-dwelling photosynthetic organisms as a means to regulate buoyancy. Heterologous expression of engineered gene clusters encoding gas vesicles allows Escherichia coli and Salmonella typhimurium to be imaged noninvasively at volumetric densities below 0.01% with a resolution of less than 100 µm. We demonstrate the imaging of engineered cells in vivo in proof-of-concept models of gastrointestinal and tumour localization, and develop acoustically distinct reporters that enable multiplexed imaging of cellular populations. This technology equips microbial cells with a means to be visualized deep inside mammalian hosts, facilitating the study of the mammalian microbiome and the development of diagnostic and therapeutic cellular agents.


Assuntos
Acústica , Trato Gastrointestinal/microbiologia , Genes Bacterianos , Genes Reporter/genética , Neoplasias Ovarianas/microbiologia , Proteínas/genética , Ultrassonografia/métodos , Animais , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Feminino , Gases/análise , Regulação Bacteriana da Expressão Gênica , Engenharia Genética , Xenoenxertos , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Família Multigênica/genética , Nanoestruturas/análise , Transplante de Neoplasias , Fotossíntese , Proteínas/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/isolamento & purificação
3.
Alzheimers Dement ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923164

RESUMO

INTRODUCTION: Inpp5d is genetically associated with Alzheimer's disease risk. Loss of Inpp5d alters amyloid pathology in models of amyloidosis. Inpp5d is expressed predominantly in microglia but its function in brain is poorly understood. METHODS: We performed single-cell RNA sequencing to study the effect of Inpp5d loss on wild-type mouse brain transcriptomes. RESULTS: Loss of Inpp5d has sex-specific effects on the brain transcriptome. Affected genes are enriched for multiple neurodegeneration terms. Network analyses reveal a gene co-expression module centered around Inpp5d in female mice. Inpp5d loss alters Pleotrophin (PTN), Prosaposin (PSAP), and Vascular Endothelial Growth Factor A (VEGFA) signaling probability between cell types. DISCUSSION: Our data suggest that the normal function of Inpp5d is entangled with mechanisms involved in neurodegeneration. We report the effect of Inpp5d loss without pathology and show that this has dramatic effects on gene expression. Our study provides a critical reference for researchers of neurodegeneration, allowing separation of disease-specific changes mediated by Inpp5d in disease from baseline effects of Inpp5d loss. HIGHLIGHTS: Loss of Inpp5d has different effects in male and female mice. Genes dysregulated by Inpp5d loss relate to neurodegeneration. Total loss of Inpp5d in female mice collapses a conserved gene co-expression module. Loss of microglial Inpp5d affects the transcriptome of other cell types.

4.
Alzheimers Dement ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923171

RESUMO

INTRODUCTION: A noncoding variant (rs35349669) within INPP5D, a lipid and protein phosphatase restricted to microglia in the brain, is linked to increased susceptibility to Alzheimer's disease (AD). While Inpp5d is well-studied in amyloid pathology, its role in tau pathology remains unclear. METHODS: PS19 Tauopathy mice were crossed with Inpp5d-haplodeficient (Inpp5d+/-) mice to examine the impact of Inpp5d in tau pathology. RESULTS: Increased INPP5D expression correlated positively with phospho-Tau AT8 in PS19 mice. Inpp5d haplodeficiency mitigated hyperphosphorylated tau levels (AT8, AT180, AT100, and PHF1) and motor deficits in PS19 mice. Transcriptomic analysis revealed an up-regulation of genes associated with immune response and cell migration. DISCUSSION: Our findings define an association between INPP5D expression and tau pathology in PS19 mice. Alleviation in hyperphosphorylated tau, motor deficits, and transcriptomics changes in haplodeficient-Inpp5d PS19 mice indicate that modulation in INPP5D expression may provide therapeutic potential for mitigating tau pathology and improving motor deficits. HIGHLIGHTS: The impact of Inpp5d in the context of tau pathology was studied in the PS19 mouse model. INPP5D expression is associated with tau pathology. Reduced Inpp5d expression in PS19 mice improved motor functions and decreased total and phospho-Tau levels. Inpp5d haplodeficiency in PS19 mice modulates gene expression patterns linked to immune response and cell migration. These data suggest that inhibition of Inpp5d may be a therapeutic approach in tauopathies.

5.
Alzheimers Dement ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687251

RESUMO

INTRODUCTION: Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action. METHODS: Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE ε4/ε4 and Trem2*R47H. The potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts. RESULTS: We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes. DISCUSSION: These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics. HIGHLIGHTS: A novel approach to validate genetic risk factors for late-onset AD (LOAD) is presented. LOAD risk variants were knocked in to conserved mouse loci. Variant effects were assayed by transcriptional analysis. Risk variants in Abca7, Mthfr, Plcg2, and Sorl1 loci modeled molecular signatures of clinical disease. This approach should generate more translationally relevant animal models.

6.
Alzheimers Dement ; 19(6): 2528-2537, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36524682

RESUMO

INTRODUCTION: Inositol polyphosphate-5-phosphatase (INPP5D) is a microglia-enriched lipid phosphatase in the central nervous system. A non-coding variant (rs35349669) in INPP5D increases the risk for Alzheimer's disease (AD), and elevated INPP5D expression is associated with increased plaque deposition. INPP5D negatively regulates signaling via several microglial cell surface receptors, including triggering receptor expressed on myeloid cells 2 (TREM2); however, the impact of INPP5D inhibition on AD pathology remains unclear. METHODS: We used the 5xFAD mouse model of amyloidosis to assess how Inpp5d haplodeficiency regulates amyloid pathogenesis. RESULTS: Inpp5d haplodeficiency perturbs the microglial intracellular signaling pathways regulating the immune response, including phagocytosis and clearing of amyloid beta (Aß). It is important to note that Inpp5d haploinsufficiency leads to the preservation of cognitive function. Spatial transcriptomic analysis revealed that pathways altered by Inpp5d haploinsufficiency are related to synaptic regulation and immune cell activation. CONCLUSION: These data demonstrate that Inpp5d haplodeficiency enhances microglial functions by increasing plaque clearance and preserves cognitive abilities in 5xFAD mice. Inhibition of INPP5D is a potential therapeutic strategy for AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Microglia/metabolismo , Placa Amiloide/patologia , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
7.
Nat Chem Biol ; 16(9): 988-996, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661379

RESUMO

Visualizing biomolecular and cellular processes inside intact living organisms is a major goal of chemical biology. However, existing molecular biosensors, based primarily on fluorescent emission, have limited utility in this context due to the scattering of light by tissue. In contrast, ultrasound can easily image deep tissue with high spatiotemporal resolution, but lacks the biosensors needed to connect its contrast to the activity of specific biomolecules such as enzymes. To overcome this limitation, we introduce the first genetically encodable acoustic biosensors-molecules that 'light up' in ultrasound imaging in response to protease activity. These biosensors are based on a unique class of air-filled protein nanostructures called gas vesicles, which we engineered to produce nonlinear ultrasound signals in response to the activity of three different protease enzymes. We demonstrate the ability of these biosensors to be imaged in vitro, inside engineered probiotic bacteria, and in vivo in the mouse gastrointestinal tract.


Assuntos
Acústica/instrumentação , Técnicas Biossensoriais/instrumentação , Enzimas/metabolismo , Trato Gastrointestinal/enzimologia , Ultrassonografia/métodos , Animais , Bactérias/enzimologia , Bactérias/genética , Técnicas Biossensoriais/métodos , Calpaína/análise , Calpaína/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Endopeptidases/análise , Endopeptidases/metabolismo , Enzimas/análise , Desenho de Equipamento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Nanoestruturas/química , Potyvirus/enzimologia , Probióticos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Razão Sinal-Ruído , Ultrassonografia/instrumentação
8.
Nat Chem Biol ; 16(9): 1035, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32704181

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Neuroimage ; 209: 116467, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846757

RESUMO

Hemodynamic functional ultrasound imaging (fUS) of neural activity provides a unique combination of spatial coverage, spatiotemporal resolution and compatibility with freely moving animals. However, deep and transcranial monitoring of brain activity and the imaging of dynamics in slow-flowing blood vessels remains challenging. To enhance fUS capabilities, we introduce biomolecular hemodynamic enhancers based on gas vesicles (GVs), genetically encodable ultrasound contrast agents derived from buoyant photosynthetic microorganisms. We show that intravenously infused GVs enhance ultrafast Doppler ultrasound contrast and visually-evoked hemodynamic contrast in transcranial fUS of the mouse brain. This hemodynamic contrast enhancement is smoother than that provided by conventional microbubbles, allowing GVs to more reliably amplify neuroimaging signals.


Assuntos
Encéfalo/diagnóstico por imagem , Meios de Contraste , Neuroimagem Funcional/métodos , Hemodinâmica , Aumento da Imagem/métodos , Microbolhas , Ultrassonografia Doppler Transcraniana/métodos , Animais , Meios de Contraste/administração & dosagem , Neuroimagem Funcional/normas , Aumento da Imagem/normas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Reprodutibilidade dos Testes , Ultrassonografia Doppler Transcraniana/normas
10.
Nat Mater ; 17(5): 456-463, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29483636

RESUMO

Non-invasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles (GVs), a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of GVs, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities.


Assuntos
Acústica , Gases , Imageamento por Ressonância Magnética/métodos , Proteínas/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cianobactérias , Nanoestruturas , Proteínas/metabolismo
11.
Nat Chem Biol ; 13(1): 75-80, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27842069

RESUMO

Temperature is a unique input signal that could be used by engineered microbial therapeutics to sense and respond to host conditions or spatially targeted external triggers such as focused ultrasound. To enable these possibilities, we present two families of tunable, orthogonal, temperature-dependent transcriptional repressors providing switch-like control of bacterial gene expression at thresholds spanning the biomedically relevant range of 32-46 °C. We integrate these molecular bioswitches into thermal logic circuits and demonstrate their utility in three in vivo microbial therapy scenarios, including spatially precise activation using focused ultrasound, modulation of activity in response to a host fever, and self-destruction after fecal elimination to prevent environmental escape. This technology provides a critical capability for coupling endogenous or applied thermal signals to cellular function in basic research, biomedical and industrial applications.


Assuntos
Antibacterianos/metabolismo , Escherichia coli/genética , Fezes/microbiologia , Febre , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/metabolismo , Temperatura , Ultrassom , Animais , Antibacterianos/química , Escherichia coli/isolamento & purificação , Feminino , Camundongos , Viabilidade Microbiana , Proteínas Repressoras/química , Dermatopatias/microbiologia
12.
Angew Chem Int Ed Engl ; 57(38): 12385-12389, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30089191

RESUMO

Making cells magnetic is a long-standing goal of chemical biology, aiming to enable the separation of cells from complex biological samples and their visualization in vivo using magnetic resonance imaging (MRI). Previous efforts towards this goal, focused on engineering cells to biomineralize superparamagnetic or ferromagnetic iron oxides, have been largely unsuccessful due to the stringent required chemical conditions. Here, we introduce an alternative approach to making cells magnetic, focused on biochemically maximizing cellular paramagnetism. We show that a novel genetic construct combining the functions of ferroxidation and iron chelation enables engineered bacterial cells to accumulate iron in "ultraparamagnetic" macromolecular complexes, allowing these cells to be trapped with magnetic fields and imaged with MRI in vitro and in vivo. We characterize the properties of these cells and complexes using magnetometry, nuclear magnetic resonance, biochemical assays, and computational modeling to elucidate the unique mechanisms and capabilities of this paramagnetic concept.


Assuntos
Quelantes/química , Compostos Férricos/química , Magnetismo , Animais , Proteínas de Transporte de Cátions/genética , Ceruloplasmina/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Oxirredução , Peptídeos/genética , Plasmídeos/genética , Plasmídeos/metabolismo
13.
Am J Respir Cell Mol Biol ; 53(2): 276-84, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25569356

RESUMO

In allergic asthma, homeostatic pathways are dysregulated, which leads to an immune response toward normally innocuous antigens. The CD200-CD200 receptor pathway is a central regulator of inflammation, and CD200 expression was recently found to be down-regulated in circulating leukocytes of patients with asthma. Given the antiinflammatory properties of CD200, we investigated whether local delivery of recombinant CD200 (rCD200) could reinstate lung homeostasis in an experimental model of asthma. Brown Norway rats were sensitized with ovalbumin (OVA) and alum. rCD200 was intratracheally administered 24 hours before OVA challenge, and airway responsiveness to methacholine was measured 24 hours after the allergen challenge. Inflammation was also assessed by measuring cell recruitment and cytokine levels in bronchoalveolar lavages, as well as lung and draining lymph node accumulation of dendritic cells (DCs) and T cells. In sensitized rats, rCD200 abolished airway hyperresponsiveness, whereas the sham treatment had no effect. In addition, rCD200 strongly reduced OVA-induced lung accumulation of myeloid DCs, CD4(+) T cells, and T helper type 2 cells. This was associated with a strong reduction of OVA-induced IL-13 level and with an increase of IL-10 in supernatants of bronchoalveolar lavages. Lung eosinophilia and draining lymph node accumulation of myeloid DCs and T cells were not affected by rCD200. Overall, these data reveal that rCD200 can inhibit airway hyperresponsiveness in a model of asthma by a multistep mechanism associated with local alterations of the T cell response and the cytokine milieu.


Assuntos
Antígenos CD/uso terapêutico , Asma/metabolismo , Receptores Imunológicos/fisiologia , Animais , Antígenos CD/farmacologia , Asma/tratamento farmacológico , Asma/imunologia , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Masculino , Contração Muscular , Músculo Liso/fisiopatologia , Ratos , Células Th2/imunologia , Traqueia/fisiopatologia
14.
Am J Respir Crit Care Med ; 190(8): 879-85, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25191967

RESUMO

RATIONALE: Airway narrowing is maintained for a prolonged period after acute bronchoconstriction in humans in the absence of deep inspirations (DIs). OBJECTIVES: To determine whether maintenance of airway smooth muscle (ASM) shortening is responsible for the persistence of airway narrowing in healthy subjects following transient methacholine (MCh)-induced bronchoconstriction. METHODS: On two separate visits, five healthy subjects underwent MCh challenges until respiratory system resistance (Rrs) had increased by approximately 1.5 cm H2O/L/s. Subjects took a DI either immediately after or 30 minutes after the last dose. The extent of renarrowing following the bronchodilator effect of DI was used to assess the continued action of MCh (calculated as percent change in Rrs from the pre-DI Rrs). We then used human bronchial rings to determine whether ASM can maintain shortening during a progressive decrease of carbachol concentration. MEASUREMENTS AND MAIN RESULTS: The increased Rrs induced by MCh was maintained for 30 minutes despite waning of MCh concentration over that period, measured as attenuated renarrowing when the DI was taken 30 minutes after compared with immediately after the last dose (7 min post-DI, -36.2 ± 11.8 vs. 14.4 ± 13.2%; 12 min post-DI, -39.5 ± 9.8 vs. 15.2 ± 17.8%). Ex vivo, ASM shortening was largely maintained during a progressive decrease of carbachol concentration, even down to concentrations that would not be expected to induce shortening. CONCLUSIONS: The maintenance of airway narrowing despite MCh clearance in humans is attributed to an intrinsic ability of ASM to maintain shortening during a progressive decrease of contractile stimulation.


Assuntos
Resistência das Vias Respiratórias/efeitos dos fármacos , Testes de Provocação Brônquica , Broncoconstrição/efeitos dos fármacos , Broncoconstritores/farmacologia , Inalação/fisiologia , Cloreto de Metacolina/farmacologia , Músculo Liso/efeitos dos fármacos , Adulto , Resistência das Vias Respiratórias/fisiologia , Brônquios/efeitos dos fármacos , Brônquios/fisiologia , Broncoconstrição/fisiologia , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Liso/fisiologia
15.
Cells ; 12(12)2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37371067

RESUMO

The role of TREM2 in Alzheimer's disease (AD) is not fully understood. Previous studies investigating the effect of TREM2 deletion on tauopathy mouse models without the contribution of b-amyloid have focused only on tau overexpression models. Herein, we investigated the effects of TREM2 deficiency on tau spreading using a mouse model in which endogenous tau is seeded to produce AD-like tau features. We found that Trem2-/- mice exhibit attenuated tau pathology in multiple brain regions concomitant with a decreased microglial density. The neuroinflammatory profile in TREM2-deficient mice did not induce an activated inflammatory response to tau pathology. These findings suggest that reduced TREM2 signaling may alter the response of microglia to pathological tau aggregates, impairing their activation and decreasing their capacity to contribute to tau spreading. However, caution should be exercised when targeting TREM2 as a therapeutic entry point for AD until its involvement in tau aggregation and propagation is better understood.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Glicoproteínas de Membrana/genética , Microglia/metabolismo , Receptores Imunológicos/genética , Transdução de Sinais , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/patologia , Animais , Camundongos
16.
bioRxiv ; 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38187758

RESUMO

Introduction: Genome-wide association studies have identified over 70 genetic loci associated with late-onset Alzheimer's disease (LOAD), but few candidate polymorphisms have been functionally assessed for disease relevance and mechanism of action. Methods: Candidate genetic risk variants were informatically prioritized and individually engineered into a LOAD-sensitized mouse model that carries the AD risk variants APOE4 and Trem2*R47H. Potential disease relevance of each model was assessed by comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 and 12 months of age with human study cohorts. Results: We created new models for 11 coding and loss-of-function risk variants. Transcriptomic effects from multiple genetic variants recapitulated a variety of human gene expression patterns observed in LOAD study cohorts. Specific models matched to emerging molecular LOAD subtypes. Discussion: These results provide an initial functionalization of 11 candidate risk variants and identify potential preclinical models for testing targeted therapeutics.

17.
Cancer Res ; 83(8): 1345-1360, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37057595

RESUMO

Study of genomic aberrations leading to immortalization of epithelial cells has been technically challenging due to the lack of isogenic models. To address this, we used healthy primary breast luminal epithelial cells of different genetic ancestry and their hTERT-immortalized counterparts to identify transcriptomic changes associated with immortalization. Elevated expression of TONSL (Tonsoku-like, DNA repair protein) was identified as one of the earliest events during immortalization. TONSL, which is located on chromosome 8q24.3, was found to be amplified in approximately 20% of breast cancers. TONSL alone immortalized primary breast epithelial cells and increased telomerase activity, but overexpression was insufficient for neoplastic transformation. However, TONSL-immortalized primary cells overexpressing defined oncogenes generated estrogen receptor-positive adenocarcinomas in mice. Analysis of a breast tumor microarray with approximately 600 tumors revealed poor overall and progression-free survival of patients with TONSL-overexpressing tumors. TONSL increased chromatin accessibility to pro-oncogenic transcription factors, including NF-κB and limited access to the tumor-suppressor p53. TONSL overexpression resulted in significant changes in the expression of genes associated with DNA repair hubs, including upregulation of several genes in the homologous recombination (HR) and Fanconi anemia pathways. Consistent with these results, TONSL-overexpressing primary cells exhibited upregulated DNA repair via HR. Moreover, TONSL was essential for growth of TONSL-amplified breast cancer cell lines in vivo, and these cells were sensitive to TONSL-FACT complex inhibitor CBL0137. Together, these findings identify TONSL as a regulator of epithelial cell immortalization to facilitate cancer initiation and as a target for breast cancer therapy. SIGNIFICANCE: The chr.8q24.3 amplicon-resident gene TONSL is upregulated during the initial steps of tumorigenesis to support neoplastic transformation by increasing DNA repair and represents a potential therapeutic target for treating breast cancer.


Assuntos
NF-kappa B , Oncogenes , Animais , Camundongos , Carcinogênese/genética , Transformação Celular Neoplásica/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Oncogenes/genética , Fatores de Transcrição/genética
18.
Nat Commun ; 13(1): 1585, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332124

RESUMO

Rapid advances in synthetic biology are driving the development of genetically engineered microbes as therapeutic agents for a multitude of human diseases, including cancer. The immunosuppressive microenvironment of solid tumors, in particular, creates a favorable niche for systemically administered bacteria to engraft and release therapeutic payloads. However, such payloads can be harmful if released outside the tumor in healthy tissues where the bacteria also engraft in smaller numbers. To address this limitation, we engineer therapeutic bacteria to be controlled by focused ultrasound, a form of energy that can be applied noninvasively to specific anatomical sites such as solid tumors. This control is provided by a temperature-actuated genetic state switch that produces lasting therapeutic output in response to briefly applied focused ultrasound hyperthermia. Using a combination of rational design and high-throughput screening we optimize the switching circuits of engineered cells and connect their activity to the release of immune checkpoint inhibitors. In a clinically relevant cancer model, ultrasound-activated therapeutic microbes successfully turn on in situ and induce a marked suppression of tumor growth. This technology provides a critical tool for the spatiotemporal targeting of potent bacterial therapeutics in a variety of biological and clinical scenarios.


Assuntos
Imunoterapia , Neoplasias , Bactérias/genética , Engenharia Genética , Humanos , Neoplasias/terapia , Biologia Sintética , Microambiente Tumoral
19.
Nat Neurosci ; 25(12): 1597-1607, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344699

RESUMO

Tau aggregation is a defining histopathological feature of Alzheimer's disease and other tauopathies. However, the cellular mechanisms involved in tau propagation remain unclear. Here, we performed an unbiased quantitative proteomic study to identify proteins that specifically interact with this tau seed. We identified Bassoon (BSN), a presynaptic scaffolding protein, as an interactor of the tau seed isolated from a mouse model of tauopathy, and from Alzheimer's disease and progressive supranuclear palsy postmortem samples. We show that BSN exacerbates tau seeding and toxicity in both mouse and Drosophila models for tauopathy, and that BSN downregulation decreases tau spreading and overall disease pathology, rescuing synaptic and behavioral impairments and reducing brain atrophy. Our findings improve the understanding of how tau seeds can be stabilized by interactors such as BSN. Inhibiting tau-seed interactions is a potential new therapeutic approach for neurodegenerative tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Camundongos , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Proteômica , Encéfalo/metabolismo , Tauopatias/metabolismo
20.
Adv Mater ; 33(17): e2007473, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33709508

RESUMO

Engineered probiotics have the potential to diagnose and treat a variety of gastrointestinal (GI) diseases. However, these exogenous bacterial agents have limited ability to effectively colonize specific regions of the GI tract due to a lack of external control over their localization and persistence. Magnetic fields are well suited to providing such control, since they freely penetrate biological tissues. However, they are difficult to apply with sufficient strength to directly manipulate magnetically labeled cells in deep tissue such as the GI tract. Here, it is demonstrated that a composite biomagnetic material consisting of microscale magnetic particles and probiotic bacteria, when orally administered and combined with an externally applied magnetic field, enables the trapping and retention of probiotic bacteria within the GI tract of mice. This technology improves the ability of these probiotic agents to accumulate at specific locations and stably colonize without antibiotic treatment. By enhancing the ability of GI-targeted probiotics to be at the right place at the right time, cellular localization assisted by magnetic particles (CLAMP) adds external physical control to an important emerging class of microbial theranostics.


Assuntos
Bactérias , Trato Gastrointestinal , Fenômenos Magnéticos , Probióticos , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa