Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Intervirology ; 62(3-4): 134-144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31533107

RESUMO

OBJECTIVES: Differences have been observed in the susceptibility of macrophage cell lines to respiratory syncytial virus (RSV) infection. In this study, we evaluated whether the type of macrophage cell line and RSV strain used have an influence on the infectivity and production of progeny virus. METHODS: Both human and murine macrophage-like cell lines were infected with different RSV strains, both lab strains as well as clinical isolates. The infection was evaluated after 24 and 72 h by immunofluorescence staining and microscopic analysis, and the production of new virus particles was determined by plaque assay. RESULTS: Susceptibility of macrophages to RSV was influenced by the RSV strain used but was mostly dependent on the macrophage cell line. Numbers of infected cells and virus production were generally very low or absent in murine cell lines. In human cell lines, clear infection was observed associated with production of new virus particles. CONCLUSION: Differences in susceptibility of macrophage cell lines to RSV infection are primarily related to the species of origin of the cell line but are also influenced by the RSV strain.


Assuntos
Especificidade de Hospedeiro , Macrófagos/virologia , Vírus Sincicial Respiratório Humano/crescimento & desenvolvimento , Replicação Viral , Animais , Linhagem Celular , Humanos , Camundongos , Carga Viral , Ensaio de Placa Viral
2.
Virol J ; 14(1): 157, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28818113

RESUMO

BACKGROUND: Host proteases have been shown to play important roles in many viral activities such as entry, uncoating, viral protein production and disease induction. Therefore, these cellular proteases are putative targets for the development of antivirals that inhibit their activity. Host proteases have been described to play essential roles in Ebola, HCV, HIV and influenza, such that specific protease inhibitors are able to reduce infection. RSV utilizes a host protease in its replication cycle but its potential as antiviral target is unknown. Therefore, we evaluated the effect of protease inhibitors on RSV infection. METHODS: To measure the sensitivity of RSV infection to protease inhibitors, cells were infected with RSV and incubated for 18 h in the presence or absence of the inhibitors. Cells were fixed, stained and studied using fluorescence microscopy. RESULTS: Several protease inhibitors, representing different classes of proteases (AEBSF, Pepstatin A, E-64, TPCK, PMSF and aprotinin), were tested for inhibitory effects on an RSV A2 infection of HEp-2 cells. Different treatment durations, ranging from 1 h prior to inoculation and continuing for 18 h during the assay, were evaluated. Of all the inhibitors tested, AEBSF and TPCK significantly decreased RSV infection. To ascertain that the observed effect of AEBSF was not a specific feature related to HEp-2 cells, A549 and BEAS-2B cells were also used. Similar to HEp-2, an almost complete block in the number of RSV infected cells after 18 h of incubation was observed and the effect was dose-dependent. To gain insight into the mechanism of this inhibition, AEBSF treatment was applied during different phases of an infection cycle (pre-, peri- and post-inoculation treatment). The results from these experiments indicate that AEBSF is mainly active during the early entry phase of RSV. The inhibitory effect was also observed with other RSV isolates A1998/3-2 and A2000/3-4, suggesting that this is a general feature of RSV. CONCLUSION: RSV infection can be inhibited by broad serine protease inhibitors, AEBSF and TPCK. We confirmed that AEBSF inhibition is independent of the cell line used or RSV strain. The time point at which treatment with the inhibitor was most potent, was found to coincide with the expected moment of entry of the virion with the host cell.


Assuntos
Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/patogenicidade , Inibidores de Serina Proteinase/farmacologia , Sulfonas/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos , Células A549 , Aprotinina/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Endopeptidases/efeitos dos fármacos , Humanos , Cinética , Leucina/análogos & derivados , Leucina/antagonistas & inibidores , Pepstatinas/antagonistas & inibidores , Fatores de Tempo , Tosilfenilalanil Clorometil Cetona/antagonistas & inibidores , Proteínas Virais/metabolismo
3.
Virus Res ; 266: 58-68, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31004621

RESUMO

Respiratory syncytial virus (RSV) is a leading cause of infant hospitalization worldwide each year and there is presently no licensed vaccine to prevent severe RSV infections. Two major RSV glycoproteins, attachment (G) and fusion (F) protein, regulate viral replication and both proteins contain potential glycosylation sites which are highly variable for the G protein and conserved for the F protein among virus isolates. The RSV F sequence possesses five N-glycosylation sites located in the F2 subunit (N27 and N70), the p27 peptide (N116 and N126) and the F1 subunit (N500). The importance of RSV F N-glycosylation in virus replication and immunogenicity is not yet fully understood, and a better understanding may provide new insights for vaccine development. By using a BAC-based reverse genetics system, recombinant viruses expressing F proteins with loss of N-glycosylation sites were made. Mutant viruses with single N-glycosylation sites removed could be recovered, while this was not possible with the mutant with all N-glycosylation sites removed. Although the individual RSV F N-glycosylation sites were shown not to be essential for viral replication, they do contribute to the efficiency of in vitro and in vivo viral infection. To evaluate the role of N-glycosylation sites on RSV F antigenicity, serum antibody titers were determined after infection of BALB/c mice with RSV expressing the glycomutant F proteins. Infection with recombinant virus lacking the N-glycosylation site at position N116 (RSV F N116Q) resulted in significant higher neutralizing antibody titers compared to RSV F WT infection, which is surprising since this N-glycan is present in the p27 peptide which is assumed to be absent from the mature F protein in virions. Thus, single or combined RSV F glycomutations which affect virus replication and fusogenicity, and which may induce enhanced antibody responses upon immunization could have the potential to improve the efficacy of RSV LAV approaches.


Assuntos
Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Vírus Sincicial Respiratório Humano/patogenicidade , Proteínas Virais de Fusão/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Células Gigantes/virologia , Glicosilação , Humanos , Imunização , Imunogenicidade da Vacina , Camundongos Endogâmicos BALB C , Mutação , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sincicial Respiratório Humano/crescimento & desenvolvimento , Vírus Sincicial Respiratório Humano/imunologia , Células Vero , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia , Replicação Viral
4.
Viruses ; 11(11)2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698728

RESUMO

Respiratory Syncytial Virus (RSV) is a very important viral pathogen in children, immunocompromised and cardiopulmonary diseased patients and the elderly. Most of the published research with RSV was performed on RSV Long and RSV A2, isolated in 1956 and 1961, yet recent RSV isolates differ from these prototype strains. Additionally, these viruses have been serially passaged in cell culture, which may result in adaptations that affect virus-host interactions. We have isolated RSV from mucosal secretions of 12 patients in the winters 2016-2017 and 2017-2018, of which eight RSV-A subtypes and four RSV-B subtypes. Passage 3 of the isolates was assessed for viral replication kinetics and infectious virus production in HEp-2, A549 and BEAS-2B cells, thermal stability at 37 °C, 32 °C and 4 °C, syncytia formation, neutralization by palivizumab and mucin mRNA expression in infected A549 cells. We observed that viruses isolated in one RSV season show differences on the tested assays. Furthermore, comparison with RSV A2 and RSV B1 reveals for some RSV isolates differences in viral replication kinetics, thermal stability and fusion capacity. Major differences are, however, not observed and differences between the recent isolates and reference strains is, overall, similar to the observed variation in between the recent isolates. One clinical isolate (BE/ANT-A11/17) replicated very efficiently in all cell lines, and remarkably, even better than RSV A2 in the HEp-2 cell line.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano/isolamento & purificação , Células A549 , Bélgica/epidemiologia , Bronquiolite/virologia , Linhagem Celular , Criança , Pré-Escolar , Humanos , Mucinas/metabolismo , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/virologia , Estações do Ano , Replicação Viral
5.
Viruses ; 10(8)2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110893

RESUMO

Prevention of severe lower respiratory tract infections in infants caused by the human respiratory syncytial virus (hRSV) remains a major public health priority. Currently, the major focus of vaccine development relies on the RSV fusion (F) protein since it is the main target protein for neutralizing antibodies induced by natural infection. The protein conserves 5 N-glycosylation sites, two of which are located in the F2 subunit (N27 and N70), one in the F1 subunit (N500) and two in the p27 peptide (N116 and N126). To study the influence of the loss of one or more N-glycosylation sites on RSV F immunogenicity, BALB/c mice were immunized with plasmids encoding RSV F glycomutants. In comparison with F WT DNA immunized mice, higher neutralizing titres were observed following immunization with F N116Q. Moreover, RSV A2-K-line19F challenge of mice that had been immunized with mutant F N116Q DNA was associated with lower RSV RNA levels compared with those in challenged WT F DNA immunized animals. Since p27 is assumed to be post-translationally released after cleavage and thus not present on the mature RSV F protein, it remains to be elucidated how deletion of this glycan can contribute to enhanced antibody responses and protection upon challenge. These findings provide new insights to improve the immunogenicity of RSV F in potential vaccine candidates.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas de DNA/administração & dosagem , Proteínas Virais de Fusão/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Feminino , Glicosilação , Humanos , Hidrólise , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Mutação , Plasmídeos/administração & dosagem , Plasmídeos/genética , Plasmídeos/imunologia , Engenharia de Proteínas , Subunidades Proteicas/administração & dosagem , Subunidades Proteicas/genética , Subunidades Proteicas/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Proteínas Virais de Fusão/administração & dosagem , Proteínas Virais de Fusão/imunologia , Carga Viral/efeitos dos fármacos
6.
Immunobiology ; 222(6): 797-806, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27899210

RESUMO

Sialoadhesin (Sn) is a surface receptor expressed on resident macrophages with the ability to bind with sialic acids. During inflammation, an upregulation of Sn is observed. Upon binding of monoclonal antibodies to Sn, the receptor becomes internalized and this has been observed in multiple species. The latter characteristic, combined with the strong upregulation of Sn on inflammatory macrophages and the fact that Sn-positive macrophages contribute to certain inflammatory diseases, makes Sn an interesting entry portal for phenotype-modulating or cytotoxic drugs. Such drugs or toxins can be linked to Sn-specific antibodies which should enable their targeted uptake by macrophages. However, the activity of such drugs depends not only on their internalization but also on the intracellular trafficking and final fate in the endolysosomal system. Although information is available for porcine Sn, the detailed mechanisms of human and mouse Sn internalization and subsequent intracellular trafficking are currently unknown. To allow development of Sn-targeted therapies, differences across species and cellular background need to be characterized in more detail. In the current report, we show that internalization of human and mouse Sn is dynamin-dependent and clathrin-mediated, both in primary macrophages and CHO cell lines expressing a recombinant Sn. In primary macrophages, internalized Sn-specific F(ab')2 fragments are located mostly in the early endosomes. With Fc containing Sn-specific antibodies, there is a slight shift towards lysosomal localization in mouse macrophages, possibly because of an interaction with Fc receptors. Surprisingly, in CHO cell lines expressing Sn, there is a predominant lysosomal localization. Our results show that the mechanism of Sn internalization and intracellular trafficking is concurrent in the tested species. The cellular background in which Sn is expressed and the type of antibody used can affect the intracellular fate, which in turn can impact the activity of antibody-based therapeutic interventions via Sn.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Endossomos/metabolismo , Inflamação/metabolismo , Macrófagos/imunologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Animais , Células CHO , Clatrina/metabolismo , Cricetulus , Regulação para Baixo , Dinaminas/metabolismo , Endocitose , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Transporte Proteico , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Ácidos Siálicos/metabolismo , Suínos
7.
PLoS One ; 10(10): e0140139, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26469696

RESUMO

Paromomycin has recently been introduced for the treatment of visceral leishmaniasis and emergence of drug resistance can only be appropriately judged upon its long term routine use in the field. Understanding alterations in parasite behavior linked to paromomycin-resistance may be essential to assess the propensity for emergence and spread of resistant strains. A standardized and integrated laboratory approach was adopted to define and assess parasite fitness of both promastigotes and amastigotes using an experimentally induced paromomycin-resistant Leishmania donovani strain and its paromomycin-susceptible parent wild-type clinical isolate. Primary focus was placed on parasite growth and virulence, two major components of parasite fitness. The combination of in vitro and in vivo approaches enabled detailed comparison of wild-type and resistant strains for which no differences could be demonstrated with regard to promastigote growth, metacyclogenesis, in vitro infectivity, multiplication in primary peritoneal mouse macrophages and infectivity for Balb/c mice upon infection with 2 x 107 metacyclic promastigotes. Monitoring of in vitro intracellular amastigote multiplication revealed a consistent decrease in parasite burden over time for both wild-type and resistant parasites, an observation that was subsequently also confirmed in a larger set of L. donovani clinical isolates. Though the impact of these findings should be further explored, the study results suggest that the epidemiological implications of acquired paromomycin-resistance may remain minimal other than the loss of one of the last remaining drugs effective against visceral leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Resistência a Medicamentos , Leishmania donovani/fisiologia , Macrófagos Peritoneais/parasitologia , Paromomicina/farmacologia , Animais , Feminino , Aptidão Genética , Técnicas In Vitro , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/isolamento & purificação , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa