Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Obes (Lond) ; 47(10): 939-947, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37443272

RESUMO

BACKGROUND: Artificial sweetener (ArtSw) intakes have been previously associated with higher BMI in observational studies and may promote visceral and skeletal muscle adipose tissue (AT) accumulation. This study aimed to determine whether habitual, long-term ArtSw or diet beverage intakes are related to greater AT depot volumes and anthropometry-related outcomes. METHODS: A validated diet history questionnaire was administered at baseline, year 7, and year 20 examinations in 3088 men and women enrolled in the Coronary Artery Risk Development in Young Adults cohort (CARDIA), mean age of 25.2 years and mean BMI of 24.5 kg/m2 at baseline. Volumes of visceral (VAT), intermuscular (IMAT), and subcutaneous adipose tissue (SAT) were assessed by computed tomography at year 25. Linear regression evaluated associations of aspartame, saccharin, sucralose, total ArtSw, and diet beverage intakes with AT volumes, anthropometric measures, and 25-year change in anthropometry. Cox regression estimated associations of ArtSw with obesity incidence. Adjustments were made for demographic and lifestyle factors, total energy intake, and the 2015 healthy eating index. RESULTS: Total ArtSw, aspartame, saccharin, and diet beverage intakes were positively associated with VAT, SAT, and IMAT volumes (all ptrend ≤ 0.001), but no associations were observed for sucralose intake (all ptrend > 0.05). In addition, total ArtSw, saccharin, aspartame, and diet beverage intakes were associated with greater body mass index, body weight, waist circumference, and their increases over a 25-year period. Except for saccharin (ptrend = 0.13), ArtSw, including diet soda, was associated with greater risks of incident obesity over a median 17.5-year follow-up (all ptrend < 0.05). CONCLUSIONS: Results suggest that long-term intakes of aspartame, saccharin, or diet soda may increase AT deposition and risk of incident obesity independent of diet quality or caloric intake. Coupled with previous evidence, alternatives to national recommendations to replace added sugar with ArtSw should be considered since both may have health consequences.


Assuntos
Aspartame , Sacarina , Masculino , Adulto Jovem , Humanos , Feminino , Adulto , Aspartame/efeitos adversos , Sacarina/efeitos adversos , Obesidade/epidemiologia , Edulcorantes/efeitos adversos , Adiposidade , Tecido Adiposo
2.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239811

RESUMO

The exposure of ionizing radiation during early gestation often leads to deleterious and even lethal effects; however, few extensive studies have been conducted on late gestational exposures. This research examined the behavior al effects of C57Bl/6J mouse offspring exposed to low dose ionizing gamma irradiation during the equivalent third trimester. Pregnant dams were randomly assigned to sham or exposed groups to either low dose or sublethal dose radiation (50, 300, or 1000 mGy) at gestational day 15. Adult offspring underwent a behavioral and genetic analysis after being raised under normal murine housing conditions. Our results indicate very little change in the behavioral tasks measuring general anxiety, social anxiety, and stress-management in animals exposed prenatally across the low dose radiation conditions. Quantitative real-time polymerase chain reactions were conducted on the cerebral cortex, hippocampus, and cerebellum of each animal; results indicate some dysregulation in markers of DNA damage, synaptic activity, reactive oxygen species (ROS) regulation, and methylation pathways in the offspring. Together, our results provide evidence in the C57Bl/6J strain, that exposure to sublethal dose radiation (<1000 mGy) during the last period of gestation leads to no observable changes in behaviour when assessed as adults, although some changes in gene expression were observed for specific brain regions. These results indicate that the level of oxidative stress occurring during late gestation for this mouse strain is not sufficient for a change in the assessed behavioral phenotype, but results in some modest dysregulation of the genetic profile of the brain.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Animais , Camundongos , Efeitos Tardios da Exposição Pré-Natal/genética , Camundongos Endogâmicos C57BL , Radiação Ionizante , Raios gama , Ansiedade/etiologia , Comportamento Animal
3.
FASEB J ; 35(5): e21511, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33826201

RESUMO

Hydrogen sulfide (H2 S) can be endogenously produced and belongs to the class of signaling molecules known as gasotransmitters. Cystathionine gamma-lyase (CSE)-derived H2 S is implicated in the regulation of cell differentiation and the aging process, but the involvements of the CSE/H2 S system in myogenesis upon aging and injury have not been explored. In this study, we demonstrated that CSE acts as a major H2 S-generating enzyme in skeletal muscles and is significantly down-regulated in aged skeletal muscles in mice. CSE deficiency exacerbated the age-dependent sarcopenia and cardiotoxin-induced injury/regeneration in mouse skeletal muscle, possibly attributed to inefficient myogenesis. In contrast, supplement of NaHS (an H2 S donor) induced the expressions of myogenic genes and promoted muscle regeneration in mice. In vitro, incubation of myoblast cells (C2C12) with H2 S promoted myogenesis, as evidenced by the inhibition of cell cycle progression and migration, altered expressions of myogenic markers, elongation of myoblasts, and formation of multinucleated myotubes. Myogenesis was also found to upregulate CSE expression, while blockage of CSE/H2 S signaling resulted in a suppression of myogenesis. Mechanically, H2 S significantly induced the heterodimer formation between MEF2c and MRF4 and promoted the binding of MEF2c/MRF4 to myogenin promoter. MEF2c was S-sulfhydrated at both cysteine 361 and 420 in the C-terminal transactivation domain, and blockage of MEF2c S-sulfhydration abolished the stimulatory role of H2 S on MEF2c/MRF4 heterodimer formation. These findings support an essential role for H2 S in maintaining myogenesis, presenting it as a potential candidate for the prevention of age-related sarcopenia and treatment of muscle injury.


Assuntos
Envelhecimento/patologia , Diferenciação Celular , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/citologia , Mioblastos/citologia , Sarcopenia/prevenção & controle , Animais , Cistationina gama-Liase/genética , Masculino , Camundongos , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Sarcopenia/etiologia , Sarcopenia/metabolismo , Sarcopenia/patologia
4.
Muscle Nerve ; 59(4): 501-508, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30623463

RESUMO

INTRODUCTION: Muscle precursor cells (MPC) are integral to the maintenance of skeletal muscle and have recently been implicated in playing a role in bone repair. The primary objective of this study was to understand better the role of oxidative stress during the osteogenic differentiation of MPCs. METHODS: Muscle precursor cells were treated with various combinations of ascorbic acid (AA), bone morphogenetic protein (BMP)-2, and either a superoxide dismutase analog (4-hydroxy-TEMPO [TEMPOL]) or polyethyleneglycol-conjugated catalase. Muscle precursor cell proliferation and differentiation were determined, and alkaline phosphatase activity was measured as an index of osteogenic differentiation. RESULTS: After treatment with 200 µM AA, superoxide was increased 1.5-fold, whereas AA in combination with 100 ng/ml BMP-2 did not increase alkaline phosphatase (ALP) activity. When cells were treated with TEMPOL in combination with 100 ng/ml BMP-2 and 200 µM AA, ALP activity significantly increased. DISCUSSION: These data suggest that increasing oxidative stress with AA induces sublethal oxidative stress that prevents BMP-2-induced osteogenic differentiation of MPCs. Muscle Nerve 59:501-508, 2019.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Proteína Morfogenética Óssea 2/antagonistas & inibidores , Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fosfatase Alcalina/análise , Fosfatase Alcalina/metabolismo , Animais , Catalase/farmacologia , Óxidos N-Cíclicos/farmacologia , Masculino , Células-Tronco Mesenquimais , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Marcadores de Spin
5.
J Gen Virol ; 98(9): 2310-2319, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28857035

RESUMO

Human papillomavirus type 16 (HPV16) is responsible for most cancers attributable to HPV infection and naturally occurring variants of the HPV16 E6 oncoprotein predispose individuals to varying risk for developing cancer. Population studies by us and others have demonstrated that the common Asian-American E6 (AAE6) variant is a higher risk factor for cervical cancer than the E6 of another common variant, the European prototype (EPE6). However, a complete understanding of the molecular processes fundamental to these epidemiological findings is still lacking. Our previously published functional studies of these two E6 variants showed that AAE6 had a higher immortalization and transformation potential than EPE6. Proteomic analysis revealed markedly different protein patterns between these variants, especially with respect to key cellular metabolic enzymes. Here, we tested the Warburg effect and hypoxia signalling (hallmarks of cancer development) as plausible mechanisms underlying these observations. Lactate and glucose production were enhanced in AAE6-transduced keratinocytes, likely due to raised levels of metabolic enzymes, but independent of hypoxia-inducible factor 1 alpha (HIF-1α) activity. The HIF-1α protein level and activity were elevated by AAE6 in hypoxic conditions, leading to a hypoxia-tolerant phenotype with enhanced migratory potential. The deregulation of HIF-1α was caused by the AAE6 variant's ability to augment mitogen-activated protein kinase/extracellular related kinase signalling. The present study reveals prominent underlying mechanisms of the AAE6's enhanced oncogenic potential.


Assuntos
Glucose/metabolismo , Papillomavirus Humano 16/fisiologia , Hipóxia/virologia , Queratinócitos/virologia , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/metabolismo , Proteínas Repressoras/metabolismo , Interações Hospedeiro-Patógeno , Papillomavirus Humano 16/classificação , Papillomavirus Humano 16/genética , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Queratinócitos/metabolismo , Ácido Láctico/metabolismo , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Proteínas Repressoras/genética
6.
ChemMedChem ; : e202400013, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648251

RESUMO

Metastasis is responsible for about 90 % of cancer deaths. Anti-metastatic drugs, termed as migrastatics, offer a distinctive therapeutic approach to address cancer migration and invasion. However, therapeutic exploitation of metastasis-specific targets remains limited, and the effective prevention and suppression of metastatic cancer continue to be elusive. Lysophosphatidic acid receptor 1 (LPA1) is activated by an endogenous lipid molecule LPA, leading to a diverse array of cellular activities. Previous studies have shown that the LPA/LPA1 axis supports the progression of metastasis for many types of cancer. In this study, we report the synthesis and biological evaluation of fluorine-containing triazole derivatives as potent LPA1 antagonists, offering potential as migrastatic drugs for triple negative breast cancer (TNBC). In particular, compound 12 f, the most potent and highly selective in this series with an IC50 value of 16.0 nM in the cAMP assay and 18.4 nM in the calcium mobilization assay, inhibited cell survival, migration, and invasion in the TNBC cell line. Interestingly, the compound did not induce apoptosis in TNBC cells and demonstrated no cytotoxic effects. These results highlight the potential of LPA1 as a migrastatic target. Consequently, the LPA1 antagonists developed in this study hold promise as potential migrastatic candidates for TNBC.

7.
Physiother Theory Pract ; : 1-16, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38384123

RESUMO

BACKGROUND: Patients with fibromyalgia experience chronic, widespread pain. It remains a misunderstood disorder with multimodal treatments providing mixed results. OBJECTIVES: To examine the effects of radial shockwave therapy (RSWT) compared to placebo on pain, pain catastrophizing, psychological indices, blood markers, and neuroimaging. Study-related experiences were also explored qualitatively. METHODS: Quantitative sensory testing (QST), Visual Analog Scale (VAS), Beighton Scoring Screen (BSS), Pain Catastrophizing Scale (PCS), blood biomarker (Interleukin (IL)-6 and IL-10), and brain fMRI were measured pre- and post-treatment along with a post-treatment survey. The RSWT group received five treatments (one week apart over five-week period) to the three most painful areas (500 shocks at 1.5 bar and 15 Hz, then 1000 shocks at 2 bar and 8 Hz, and finally 500 shocks at 1.5 bar and 15 Hz) versus sham treatment for the placebo group. RESULTS: There were no statistically significant differences in the BSS for hypermobility (p = .21; d = .74), PCS (p = .70; d = .22), VAS (p = .17-.61; d = .20-.83) scores, QST for skin temperature and stimuli (p = .14-.65; d = .25-.88), and for the pressure pain threshold (p = .71-.93; d = .05-.21). The VAS scores had clinically significant changes (MCID greater than 13.90) with improved pain scores in the RSWT group. Neuroimaging scans revealed no cortical thickness changes. Post-treatment surveys revealed pain and symptom improvements and offered hope to individuals. CONCLUSION: RSWT was implemented safely, without any negative treatment effects reported, and acted as a pain modulator to reduce sensitivity. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov identification number NCT02760212.

8.
Health Phys ; 126(6): 397-404, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568172

RESUMO

ABSTRACT: Experiments that examine the impacts of subnatural background radiation exposure provide a unique approach to studying the biological effects of low-dose radiation. These experiments often need to be conducted in deep underground laboratories in order to filter surface-level cosmic radiation. This presents some logistical challenges in experimental design and necessitates a model organism with minimal maintenance. As such, desiccated yeast ( Saccharomyces cerevisiae ) is an ideal model system for these investigations. This study aimed to determine the impact of prolonged sub-background radiation exposure in anhydrobiotic (desiccated) yeast at SNOLAB in Sudbury, Ontario, Canada. Two yeast strains were used: a normal wild type and an isogenic recombinational repair-deficient rad51 knockout strain ( rad51 Δ). Desiccated yeast samples were stored in the normal background surface control laboratory (68.0 nGy h -1 ) and in the sub-background environment within SNOLAB (10.1 nGy h -1 ) for up to 48 wk. Post-rehydration survival, growth rate, and metabolic activity were assessed at multiple time points. Survival in the sub-background environment was significantly reduced by a factor of 1.39 and 2.67 in the wild type and rad51 ∆ strains, respectively. Post-rehydration metabolic activity measured via alamarBlue reduction remained unchanged in the wild type strain but was 26% lower in the sub-background rad51 ∆ strain. These results demonstrate that removing natural background radiation negatively impacts the survival and metabolism of desiccated yeast, highlighting the potential importance of natural radiation exposure in maintaining homeostasis of living organisms.


Assuntos
Dessecação , Saccharomyces cerevisiae , Saccharomyces cerevisiae/efeitos da radiação , Rad51 Recombinase/metabolismo , Exposição à Radiação/efeitos adversos , Exposição à Radiação/análise , Doses de Radiação
9.
Can J Physiol Pharmacol ; 91(3): 248-55, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23537439

RESUMO

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that can cause severe pulmonary infection in immunocompromized individuals. During the infectious process, P. aeruginosa provokes a potent inflammatory response and induces the release of reactive oxygen species (ROS). Cells undergo oxidative stress when cellular antioxidants are unable to effectively scavenge and detoxify ROS, resulting in lung damage. Resveratrol (3,5,4'-trihydroxystilbene) is a natural polyphenolic compound with recognized antioxidant effects. We hypothesized that owing to its antioxidant activities, resveratrol can attenuate an inflammatory response in P. aeruginosa-infected cells. Lung epithelial A549 cells were pre-treated with 100 µmol/L of resveratrol for 5 h, followed by infection with P. aeruginosa. Intracellular ROS generation was used as an indicator of P. aeruginosa-induced oxidative stress, and cell surface expression of Fas receptor and activation of caspases-3 and -7 as indicators of apoptosis. We also measured the surface expression of intercellular adhesion molecule (ICAM)-1 and enzymes related to inflammation and redox signaling. Resveratrol significantly reduced ROS generation, ICAM-1, and human beta-defensin-2 expression, as well as the markers of apoptosis in A549 cells infected with P. aeruginosa, and up-regulated glutathione peroxidase, suggesting its potential therapeutic role in protecting the lungs against the deleterious effects of P. aeruginosa infection.


Assuntos
Antioxidantes/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Infecções por Pseudomonas , Pseudomonas aeruginosa/efeitos dos fármacos , Estilbenos/farmacologia , Antioxidantes/farmacologia , Linhagem Celular , Regulação para Baixo/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/microbiologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Resveratrol , Estilbenos/uso terapêutico
10.
Cells ; 12(19)2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37830558

RESUMO

FRA1 (FOSL1) is a transcription factor and a member of the activator protein-1 superfamily. FRA1 is expressed in most tissues at low levels, and its expression is robustly induced in response to extracellular signals, leading to downstream cellular processes. However, abnormal FRA1 overexpression has been reported in various pathological states, including tumor progression and inflammation. To date, the molecular effects of FRA1 overexpression are still not understood. Therefore, the aim of this study was to investigate the transcriptional and functional effects of FRA1 overexpression using the CGL1 human hybrid cell line. FRA1-overexpressing CGL1 cells were generated using stably integrated CRISPR-mediated transcriptional activation, resulting in a 2-3 fold increase in FRA1 mRNA and protein levels. RNA-sequencing identified 298 differentially expressed genes with FRA1 overexpression. Gene ontology analysis showed numerous molecular networks enriched with FRA1 overexpression, including transcription-factor binding, regulation of the extracellular matrix and adhesion, and a variety of signaling processes, including protein kinase activity and chemokine signaling. In addition, cell functional assays demonstrated reduced cell adherence to fibronectin and collagen with FRA1 overexpression and altered cell cycle progression. Taken together, this study unravels the transcriptional response mediated by FRA1 overexpression and establishes the role of FRA1 in adhesion and cell cycle progression.


Assuntos
Proteínas Proto-Oncogênicas c-fos , Fator de Transcrição AP-1 , Humanos , Divisão Celular , Linhagem Celular , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
11.
Physiol Rep ; 10(9): e15292, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35510321

RESUMO

Adipose tissue (AT) has been found to exist in two predominant forms, white and brown. White adipose tissue (WAT) is the body's conventional storage organ, and brown adipose tissue (BAT) is responsible for non-shivering thermogenesis which allows mammals to produce heat and regulate body temperature. Studies examining BAT and its role in whole-body metabolism have found that active BAT utilizes glucose and circulating fatty acids and is associated with improved metabolic outcomes. While the beiging of WAT is a growing area of interest, the possibility of the BAT depot to "whiten" and store more triglycerides also has metabolic and health implications. Currently, there are limited studies that examine the effects of chronic stress and its ability to induce a white-like phenotype in the BAT depot. This research examined how chronic exposure to the murine stress hormone, corticosterone, for 4 weeks can affect the whitening process of BAT in C57BL/6 male mice. Separate treatments with mirabegron, a known ß3-adrenergic receptor agonist, were used to directly compare the effects of corticosterone with a beiging phenotype. Corticosterone-treated mice had significantly higher body weight (p ≤ 0.05) and BAT mass (p ≤ 0.05), increased adipocyte area (p ≤ 0.05), were insulin resistant (p ≤ 0.05), and significantly elevated expressions of uncoupling protein 1 (UCP-1) in BAT (p ≤ 0.05) while mitochondrial content remained unchanged. This whitened phenotype has not been previously associated with increased uncoupling proteins under chronic stress and may represent a compensatory mechanism being initiated under these conditions. These findings have implications for the study of BAT in response to chronic glucocorticoid exposure potentially leading to BAT dysfunction and negative impacts on whole-body glucose metabolism.


Assuntos
Tecido Adiposo Marrom , Glucocorticoides , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Corticosterona/metabolismo , Corticosterona/farmacologia , Feminino , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Glucose/metabolismo , Masculino , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Termogênese , Proteína Desacopladora 1/metabolismo
12.
Bioengineering (Basel) ; 9(5)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35621492

RESUMO

MicroRNAs (miRNAs) have emerged as a potential class of biomolecules for diagnostic biomarker applications. miRNAs are small non-coding RNA molecules, produced and released by cells in response to various stimuli, that demonstrate remarkable stability in a wide range of biological fluids, in extreme pH fluctuations, and after multiple freeze-thaw cycles. Given these advantages, identification of miRNA-based biomarkers for radiation exposures can contribute to the development of reliable biological dosimetry methods, especially for low-dose radiation (LDR) exposures. In this study, an miRNAome next-generation sequencing (NGS) approach was utilized to identify novel radiation-induced miRNA gene changes within the CGL1 human cell line. Here, irradiations of 10, 100, and 1000 mGy were performed and the samples were collected 1, 6, and 24 h post-irradiation. Corroboration of the miRNAome results with RT-qPCR verification confirmed the identification of numerous radiation-induced miRNA expression changes at all doses assessed. Further evaluation of select radiation-induced miRNAs, including miR-1228-3p and miR-758-5p, as well as their downstream mRNA targets, Ube2d2, Ppp2r2d, and Id2, demonstrated significantly dysregulated reciprocal expression patterns. Further evaluation is needed to determine whether the candidate miRNA biomarkers identified in this study can serve as suitable targets for radiation biodosimetry applications.

13.
Anat Rec (Hoboken) ; 305(11): 3283-3296, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35103405

RESUMO

Postmenopausal osteoporosis is a serious concern in aging individuals, but has not been explored for its potential to alter the shape of the inner ear by way of increased remodeling in the otic capsule. The otic capsule, or bony labyrinth, is thought to experience uniquely limited remodeling after development due to high levels of osteoprotegerin. On this basis, despite the widespread remodeling that accompanies osteoporosis, we hypothesize that both the shape and volume of the semicircular canals will resist such changes. To test this hypothesis, we conducted three-dimensional geometric morphometric shape analysis on microcomputed tomographic data collected on the semicircular canals of an ovariectomized (OVX) rat model. A Procrustes ANOVA found no statistically significant differences in shape between surgery and sham groups, and morphological disparity testing likewise found no differences in shape variation. Univariate testing found no differences in semicircular volume between OVX and control groups. The range of variation in the OVX group, however, is greater than in the sham group but this difference does not reach statistical significance, perhaps because of a combination of small effect size and low sample size. This finding suggests that labyrinthine shape remains a tool for assessing phylogeny and function in the fossil record, but that it is possible that osteoporosis may be contributing to intraspecific shape variation in the bony labyrinth. This effect warrants further exploration at a microstructural level with continued focus on variables related to remodeling.


Assuntos
Osteoporose , Osteoprotegerina , Canais Semicirculares , Animais , Ratos , Fósseis , Canais Semicirculares/anatomia & histologia , Ovariectomia , Feminino
14.
Am J Physiol Cell Physiol ; 300(6): C1226-33, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21325640

RESUMO

Sarcopenia is the age-associated loss of skeletal muscle mass and strength. Recent evidence suggests that an age-associated loss of muscle precursor cell (MPC) functionality contributes to sarcopenia. The objectives of the present study were to examine the influence of activated T cells on MPCs and determine whether an age-related defect in this signaling occurs. MPCs were collected from the gastrocnemius and plantaris of 3-mo-old (young) and 32-mo-old (old) animals. Splenic T cells were harvested using anti-CD3 Dynabead isolation. T cells were activated for 48 h with costimulation of 100 IU/ml interleukin-2 (IL-2) and 5 µg/ml of anti-CD28. Costimulation increased 5-bromo-2'-deoxyuridine incorporation of T cells from 13.4 ± 4.6% in control to 64.8 ± 6.0% in costimulated cells. Additionally, T cell cytokines increased proliferation on MPCs isolated from young muscle by 24.0 ± 5.7%, whereas there was no effect on MPCs isolated from aged muscle. T cell cytokines were also found to be a chemoattractant. T cells were able to promote migration of MPCs isolated from young muscle; however, MPCs isolated from aged muscle did not respond to the T cell-released chemokines. Conversely, whereas T cell-released cytokines did not affect myogenesis of MPCs isolated from young animals, there was a decrease in MPCs isolated from old animals. These data suggest that T cells may play a critical role in mediating MPC function. Furthermore, aging may alter T cell-induced MPC function. These findings have implications for developing strategies aimed at increasing MPC migration and proliferation leading to an improved regenerative capacity of aged skeletal muscle.


Assuntos
Envelhecimento/fisiologia , Músculo Esquelético/citologia , Células Precursoras de Linfócitos T/fisiologia , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Citocinas/imunologia , Humanos , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Células Precursoras de Linfócitos T/citologia , Células Precursoras de Linfócitos T/imunologia , Ratos , Ratos Endogâmicos F344 , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/fisiologia
15.
Physiol Rep ; 9(5): e14779, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33650753

RESUMO

Accumulation of white adipose tissue (WAT) underlies the obesity epidemic, leading to current therapeutic techniques that are being investigated for their ability to activate/"beige" this tissue. Adipose tissue (AT) beiging has been reported through intermittent cold exposure (CE), exercise, and ß3-Adrenergic Receptor (ß3AR) agonists. But how AT beiging can help in the treatment of metabolic disorders like obesity and type 2 diabetes (T2D) remains largely unexplored. This review summarizes recent research on the use of ß3AR agonist, mirabegron (Myrbetriq®), in stimulating beiging in AT. Researchers have only recently been able to determine the optimal therapeutic dose of mirabegron for inducing beiging in subcutaneous/ inguinal WAT, where the benefits of AT activation are evident without the undesired cardiovascular side effects. To determine whether the effects that mirabegron elicits are metabolically beneficial, a comparison of the undisputed findings resulting from intermittent CE-induced beiging and the disputed findings from exercise-induced beiging was conducted. Given the recent in vivo animal and clinical studies, the understanding of how mirabegron can be metabolically beneficial for both lean and obese individuals is more clearly understood. These studies have demonstrated that circulating adipokines, glucose metabolism, and lipid droplet (LD) size are all positively affected by mirabegron administration. Recent studies have also demonstrated that mirabegron has similar outcomes to intermittent CE and displays more direct evidence for beiging than those produced with exercise. With these current findings, mirabegron is considered the most promising and safest ß3AR agonist currently available that has the potential to be used in the therapeutic treatment of metabolic disorders, and future studies into its interaction with different conditions may prove to be useful as part of a treatment plan in combination with a healthy diet and exercise.


Assuntos
Acetanilidas/metabolismo , Tecido Adiposo Branco/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiologia , Tiazóis/metabolismo , Tecido Adiposo/metabolismo , Animais , Humanos , Obesidade/metabolismo
16.
Antioxidants (Basel) ; 10(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805403

RESUMO

The field of cardiovascular fetal programming has emphasized the importance of the uterine environment on postnatal cardiovascular health. Studies have linked increased fetal glucocorticoid exposure, either from exogenous sources (such as dexamethasone (Dex) injections), or from maternal stress, to the development of adult cardiovascular pathologies. Although the mechanisms are not fully understood, alterations in gene expression driven by altered oxidative stress and epigenetic pathways are implicated in glucocorticoid-mediated cardiovascular programming. Antioxidants, such as the naturally occurring polyphenol epigallocatechin gallate (EGCG), or the superoxide dismutase (SOD) 4-hydroxy-TEMPO (TEMPOL), have shown promise in the prevention of cardiovascular dysfunction and programming. This study investigated maternal antioxidant administration with EGCG or TEMPOL and their ability to attenuate the fetal programming of hypertension via Dex injections in WKY rats. Results from this study indicate that, while Dex-programming increased blood pressure in male and female adult offspring, administration of EGCG or TEMPOL via maternal drinking water attenuated Dex-programmed increases in blood pressure, as well as changes in adrenal mRNA and protein levels of catecholamine biosynthetic enzymes phenylalanine hydroxylase (PAH), tyrosine hydroxylase (TH), dopamine beta hydroxylase (DBH), and phenylethanolamine N-methyltransferase (PNMT), in a sex-specific manner. Furthermore, programmed male offspring displayed reduced antioxidant glutathione peroxidase 1 (Gpx1) expression, increased superoxide dismutase 1 (SOD1) and catalase (CAT) expression, and increased pro-oxidant NADPH oxidase activator 1 (Noxa1) expression in the adrenal glands. In addition, prenatal Dex exposure alters expression of epigenetic regulators histone deacetylase (HDAC) 1, 5, 6, 7, 11, in male and HDAC7 in female offspring. These results suggest that glucocorticoids may mediate the fetal programming of hypertension via alteration of epigenetic machinery and oxidative stress pathways.

17.
J Environ Radioact ; 228: 106512, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33341751

RESUMO

Extensive research has been conducted investigating the effects of ionizing radiation on biological systems, including specific focus at low doses. However, at the surface of the planet, there is the ubiquitous presence of ionizing natural background radiation (NBR) from sources both terrestrial and cosmic. We are currently conducting radiobiological experiments examining the impacts of sub-NBR exposure within SNOLAB. SNOLAB is a deep underground research laboratory in Sudbury, Ontario, Canada located 2 km beneath the surface of the planet. At this depth, significant shielding of NBR components is provided by the rock overburden. Here, we describe a Specialized Tissue Culture Incubator (STCI) that was engineered to significantly reduce background ionizing radiation levels. The STCI was installed 2 km deep underground within SNOLAB. It was designed to allow precise control of experimental variables such as temperature, atmospheric gas composition and humidity. More importantly, the STCI was designed to reduce radiological contaminants present within the underground laboratory. Quantitative measurements validated the STCI is capable of maintaining an appropriate experimental environment for sub-NBR experiments. This included reduction of sub-surface radiological contaminants, most notably radon gas. The STCI presents a truly novel piece of infrastructure enabling future research into the effects of sub-NBR exposure in a highly unique laboratory setting.


Assuntos
Radiação de Fundo , Monitoramento de Radiação , Radiobiologia , Incubadoras , Ontário , Radônio/análise
18.
Antioxidants (Basel) ; 10(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065524

RESUMO

Ionizing radiation (IR) is known to cause fetal programming, but the physiological effects of low-dose IR are not fully understood. This study examined the effect of low (50 mGy) to non-lethal (300 and 1000 mGy) radiation exposure during late gestation on cardiac metabolism and oxidative stress in adult offspring. Pregnant C57BL/6J mice were exposed to 50, 300, or 1000 mGy of gamma radiation or Sham irradiation on gestational day 15. Sixteen weeks after birth, 18F-Fluorodeoxyglucose (FDG) uptake was examined in the offspring using Positron Emission Tomography imaging. Western blot was used to determine changes in oxidative stress, antioxidants, and insulin signaling related proteins. Male and female offspring from irradiated dams had lower body weights when compared to the Sham. 1000 mGy female offspring demonstrated a significant increase in 18F-FDG uptake, glycogen content, and oxidative stress. 300 and 1000 mGy female mice exhibited increased superoxide dismutase activity, decreased glutathione peroxidase activity, and decreased reduced/oxidized glutathione ratio. We conclude that non-lethal radiation during late gestation can alter glucose uptake and increase oxidative stress in female offspring. These data provide evidence that low doses of IR during the third trimester are not harmful but higher, non-lethal doses can alter cardiac metabolism later in life and sex may have a role in fetal programming.

19.
Biomedicines ; 8(6)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545834

RESUMO

Significant depots of brown adipose tissue (BAT) have been identified in many adult humans through positron emission tomography (PET), with the amount of BAT being inversely correlated with obesity. As dietary activation of BAT has implications for whole body glucose metabolism, leucine was used in the present study to determine its ability to promote BAT activation resulting in increased glucose uptake. In order to assess this, 2-deoxy-2-(fluorine-18)fluoro-d-glucose (18F-FDG) uptake was measured in C57BL/6 mice using microPET after treatment with leucine, glucose, or both in interscapular BAT (IBAT). Pretreatment with propranolol (PRP) was used to determine the role of ß-adrenergic activation in glucose and leucine-mediated 18F-FDG uptake. Analysis of maximum standardized uptake values (SUVMAX) determined that glucose administration increased 18F-FDG uptake in IBAT by 25.3%. While leucine did not promote 18F-FDG uptake alone, it did potentiate glucose-mediated 18F-FDG uptake, increasing 18F-FDG uptake in IBAT by 22.5%, compared to glucose alone. Pretreatment with PRP prevented the increase in IBAT 18F-FDG uptake following the combination of glucose and leucine administration. These data suggest that leucine is effective in promoting BAT 18F-FDG uptake through ß-adrenergic activation in combination with glucose.

20.
PLoS One ; 15(4): e0231650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315370

RESUMO

Exposure to ionizing radiation contributing to negative health outcomes is a widespread concern. However, the impact of low dose and sub-lethal dose radiation (SLDR) exposures remain contentious, particularly in pregnant women who represent a vulnerable group. The fetal programming hypothesis states that an adverse in utero environment or stress during development of an embryo or fetus can result in permanent physiologic changes often resulting in progressive metabolic dysfunction with age. To assess changes in gene expression profiles of glucose/insulin signaling and lipid metabolism caused by radiation exposure in utero, pregnant C57Bl/6J mice were irradiated using a dose response ranging from low dose to SLDR and compared to a Sham-irradiated group. mRNA expression analysis in 16 week old offspring (n = 84) revealed that genes involved in metabolic function including glucose metabolism, insulin signaling and lipid metabolism were unaffected by prenatal radiation exposures up to 300 mGy. However, female offspring of dams exposed to 1000 mGy had upregulated expression of genes contributing to insulin resistance and gluconeogenesis. In a second cohort of mice, the effects of SLDR on fetal programming of hepatic SOCS3 and PEPCK protein expression were assessed. 4 month old female offspring of dams irradiated at 1000 mGy had: 1) increased liver weights, 2) increased hepatic expression of proteins involved in glucose metabolism and 3) increased 18F-fluorodeoxyglucose (FDG) uptake in interscapular brown adipose tissue (IBAT) measured by positron emission tomography (PET) (n = 25). The results of this study indicate that prenatal radiation exposure does not affect metabolic function up to 300 mGy and 1000 mGy may be a threshold dose for sex-specific alterations in glucose uptake and hepatic gene and protein expression of SOCS3, PEPCK, PPARGC1A and PPARGC1B. These findings suggest that SLDR doses alter glucose uptake in IBAT and hepatic gene and protein expression of offspring and these changes may progress with age.


Assuntos
Tecido Adiposo Marrom/crescimento & desenvolvimento , Desenvolvimento Fetal/genética , Resistência à Insulina/genética , Fígado/metabolismo , Tecido Adiposo Marrom/efeitos da radiação , Animais , Glicemia/metabolismo , Metabolismo dos Carboidratos/genética , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Feminino , Desenvolvimento Fetal/efeitos da radiação , Feto , Glucose/metabolismo , Humanos , Insulina/metabolismo , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/efeitos da radiação , Fígado/patologia , Masculino , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Radiação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa