RESUMO
The widespread use of pesticides in agriculture during the last several decades has contaminated soils and different Critical Zone (CZ) compartments, defined as the area extended from the top of the vegetation canopy to the groundwater table, and it integrates interactions of the atmosphere, lithosphere, biosphere, and hydrosphere. However, the long-term fate, storage, and transfer dynamics of persistent pesticides in CZ in a changing world remain poorly understood. In the French West Indies, chlordecone (CLD), a toxic organochlorine insecticide, was extensively applied to banana fields to control banana weevil from 1972 to 1993 after which it was banned. Here, to understand CZ trajectories we apply a retrospective observation based on marine sediment core analyses to monitor long-term CLD transfer, fate, and consequences in Guadeloupe and Martinique islands. Both CLD profiles show synchronous chronologies. We hypothesized that the use of glyphosate, a postemergence herbicide, from the late 1990s onward induced CZ modification with an increase in soil erosion and led to the release of the stable CLD stored in the soils of polluted fields. CLD fluxes drastically increased when glyphosate use began, leading to widespread ecosystem contamination. As glyphosate is used globally, ecotoxicological risk management strategies should consider how its application affects persistent pesticide storage in soils, transfer dynamics, and widespread contamination.
Assuntos
Clordecona , Inseticidas , Poluentes do Solo , Clordecona/análise , Ecossistema , Glicina/análogos & derivados , Guadalupe , Inseticidas/análise , Estudos Retrospectivos , Poluentes do Solo/análise , Índias Ocidentais , GlifosatoRESUMO
The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident led to important releases of radionuclides into the environment, and trace levels of plutonium (Pu) were detected in northeastern Japan. However, measurements of Pu isotopic atom and activity ratios are required to differentiate between the contributions of global nuclear test fallout and FDNPP emissions. In this study, we used a double-focusing sector field ICP-MS to measure Pu atom and activity ratios in recently deposited sediment along rivers draining the most contaminated part of the inland radioactive plume. Results showed that plutonium isotopes (i.e., (239)Pu, (240)Pu, (241)Pu, and (242)Pu) were detected in all samples, although in extremely low concentrations. The (241)Pu/(239)Pu atom ratios measured in sediment deposits (0.0017-0.0884) were significantly higher than the corresponding values attributed to the global fallout (0.00113 ± 0.00008 on average for the Northern Hemisphere between 31°-71° N: Kelley, J. M.; Bond, L. A.; Beasley, T. M. Global distribution of Pu isotopes and (237)Np. Sci. Total. Env. 1999, 237/238, 483-500). The results indicated the presence of Pu from FDNPP, in slight excess compared to the Pu background from global fallout that represented up to ca. 60% of Pu in the analyzed samples. These results demonstrate that this radionuclide has been transported relatively long distances (â¼45 km) from FDNPP and been deposited in rivers representing a potential source of Pu to the ocean. In future, the high (241)Pu/(239)Pu atom ratio of the Fukushima accident sourced-Pu should be measured to quantify the supply of continental-originating material from Fukushima Prefecture to the Pacific Ocean.
Assuntos
Acidente Nuclear de Fukushima , Plutônio/análise , Monitoramento de Radiação , Cinza Radioativa/análise , Rios/química , Poluentes Radioativos da Água/análise , Japão , Centrais Nucleares , Oceano Pacífico , Plutônio/química , Radioisótopos/análiseRESUMO
In 2011, the Fukushima Dai-Ichi Nuclear Power Plant (FDNPP) accident released significant quantities of radionuclides into the environment. Japanese authorities decided to progressively reopen the Difficult-To-Return Zone after the decontamination of priority reconstruction zones. These areas include parts of the initially highly contaminated municipalities located to the north of the FDNPP, including Namie Town, an area drained by the Ukedo and Takase Rivers. Eleven years after the accident, research focused on the spatial distribution of plutonium (Pu) and radiocesium (Cs) isotopes at contrasted individual locations. To complement previous results, the current research was conducted on flood sediment deposits collected at the same locations after major flooding events during eleven fieldwork campaigns organised between 2013 and 2020 at the outlet of the Ukedo and Takase Rivers (n = 22). The results highlighted a global decrease of the Pu and 137Cs contents in sediment with time during the abandonment phase in the region, from 2013 (238.20 fg g-1) to 2020 (4.28 fg g-1). Furthermore, based on the analysis of the 240Pu/239Pu isotopic ratios, the plutonium transiting these rivers (range: 0.166 - 0.220) essentially originated from the global fallout (0.180 ± 0.014 (Kelley et al., 1999)). Sediment showed contrasted properties in the two investigated rivers, which is likely mainly the result of the occurrence of Ogaki Dam on upper sections of the Ukedo River as it strongly impacts the material supply from this river to the Pacific Ocean. A statistical analysis highlighted the strong correlation between Pu activity concentrations and 137Cs activities in both rivers, confirming that both radionuclides are transported with a similar pathway. Despite it was detected early after the accident (2011-2013), the current research demonstrates that plutonium originating from FDNPP is no longer detected in these rivers draining the Difficult-To-Return Zone at the onset of the reopening of the area to its former inhabitants.
Assuntos
Acidente Nuclear de Fukushima , Plutônio , Monitoramento de Radiação , Poluentes Radioativos da Água , Plutônio/análise , Monitoramento de Radiação/métodos , Japão , Rios , Poluentes Radioativos da Água/análise , Radioisótopos de Césio/análiseRESUMO
In this study, we explore the variability of sedimentation conditions (e.g., grain-size, accumulation rate, contamination) according to fluvial depositional environments. Indeed, sediment cores are commonly used as archives of natural and anthropogenic activities in hydrosystems, but their interpretation is often complex, especially in a fluvial context where many factors may affect the quality, continuity, and resolution of the record. It is therefore critical to thoroughly understand the nature and dynamics of an environment in which a sediment core is sampled to be able to interpret it. To that end, four depositional environments from a bypassed reach of the Rhône River were comparatively investigated through geophysics in order to assess the range of sedimentation conditions: a floodplain, a semi-active secondary channel, an active secondary channel, and a dam reservoir. Sediment cores were retrieved from each environment and thoroughly characterised (e.g., grain-size, Total Organic Carbon, organic contaminants). Robust age-depth models were elaborated for each core based on 137Cs, 210Pbex, and Persistent Organic Pollutants (POPs) trends. The results show that each depositional environment recorded a different time-period, and therefore different contamination levels and trends. In particular, a shift from polychlorinated biphenyls (PCBs) to polybrominated diphenyl ethers (PBDEs) as the predominant POP in the sediments can be observed, the tipping point being set in the 1970s. Two types of infrastructure-induced legacy sediments related to two periods of river engineering in the reach were also identified using grain-size analysis. The combination of geophysical methods (Ground Penetrating Radar) and sediment cores is therefore confirmed as a relevant methodology that should be promoted in fluvial contexts in order to reconstruct the sedimentary evolution of fluvial corridors. The study also highlights the challenges of dating recent fluvial sediments and proposes a multi-proxy dating methodology using POPs contamination trends.
RESUMO
Records on pollution by metals of minor economic importance (e.g. silver and thallium) but which prove to be toxic are rarely documented in river sediment. This study used two sediment cores collected downstream of the Seine River to describe the temporal evolution of Ag and Tl concentrations in an urban catchment. Radionuclide analysis (i.e. Cs-137 and Pb-210) allowed dating sediment deposition within the cores (1933-2003). Ag concentration reached maximum values of 14.3-24.6 mg kg(-1) in the 1960s and 1970s, before gradually decreasing up to values which approximated 4 mg kg(-1) in 2003. In contrast, Tl concentrations remained roughly constant throughout the core (median value of 0.86 mg kg(-1)). Suspended solids was collected at upstream locations in the catchment to derive the background concentrations in Ag and Tl. Very high Ag concentrations were measured in the upstream Seine River sites (0.33-0.59 mg kg(-1)), compared to the values reported in the literature (0.055 mg kg(-1)). This suggests the presence of a widespread and ancient Ag pollution in the Seine River basin, as demonstrated by the very high Ag enrichment ratios recorded in the cores. Annual flux of particulate Ag in the Seine River was estimated at 1.7 t yr(-1) in 2003. In contrast, Tl concentrations remained in the same order of magnitude as the natural background signal (0.3-0.5 mg kg(-1)). This study suggests that the Seine River basin is free of Tl contamination. Future concerns should hence mostly rely on Ag contamination, in a context of increasing Ag uses and possible releases to the environment.
Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/análise , Rios/química , Prata/análise , Tálio/análise , FrançaRESUMO
An excessive supply of sediment is observed in numerous rivers across the world where it leads to deleterious impacts. Information on the sources delivering this material to waterbodies is required to design effective management measures, and sediment tracing or fingerprinting techniques are increasingly used to quantify the amount of sediment derived from different sources. However, the current methods used to identify the land use contributions to sediment have a limited discrimination power. Here, we investigated the potential of environmental DNA (eDNA) to provide more detailed information on the plant species found in sediment source areas as a next generation fingerprint. To this end, flood sediment deposits (nâ¯=â¯12) were collected in 2017 in two catchments impacted by the Fukushima radioactive fallout along differing river sections draining forests, cropland or a mix of both land uses. Conventional fingerprints (i.e. fallout radionuclides and organic matter properties) were also measured in these samples. The conventional fingerprint model results showed that most sediment samples contained a dominant proportion of subsoil material. Nevertheless, the eDNA information effectively discriminated the three above-mentioned groups of sediment, with the dominance of tree, shrub and fern species in sediment sampled in rivers draining forests versus a majority of grass, algae and cultivated plant species in sediment collected in rivers draining cropland. Based on these encouraging results, future research should examine the potential of eDNA in mixed land use catchments where the contribution of topsoil to sediment dominates and where the cultivation of land has not been abandoned in order to better characterize the memory effect of eDNA in soils and sediment.
Assuntos
DNA/análise , Acidente Nuclear de Fukushima , Sedimentos Geológicos/análise , Monitoramento de Radiação/métodos , Cinza Radioativa/análise , Poluentes Radioativos da Água/análise , Carbono/análise , Isótopos de Carbono/análise , Japão , Nitrogênio/análise , Isótopos de Nitrogênio/análise , Radioisótopos/análiseRESUMO
The excessive supply of contaminants from urban areas to rivers during the last centuries has led to deleterious impacts on aquatic ecosystems. The sources, the behavior, and the dynamics of these contaminants must be better understood in order to reduce this excessive anthropogenic pollution. Accordingly, the current research investigated the particle-bound trace element (TE) contamination of the 900-km2 Orge River (Seine basin, France) and the potential sources of these particles (agricultural or forest soils, channel banks, road deposited sediments), through the analysis of multiple fallout radionuclides, elemental geochemistry, and lead isotopic composition on suspended particulate matter (SPM) collected during a hydrological year at four stations following an increasing urbanization gradient (300 to 5000 inhab.km-2). Fallout radionuclide measurements showed an increasing contribution of recently eroded particles from urban areas to the SPM in downstream direction. However, this contribution varied depending on hydrological conditions. A greater contribution of particles originating from urban areas was observed during low stage periods. On the contrary, the contribution of agricultural soils and channel banks that are less enriched in contaminants and fallout radionuclides was higher during seasonal floods, which explained the dilution of radionuclide contents in sediment transiting the river during those events. Trace element contamination of SPM in Cu, Zn, Pb, and Sb increased from moderate to significant levels with urban pressure in downstream direction (with corresponding enrichment factors raising from 2 to 6). In addition, Pb isotopic ratios indicated that the main source of Pb corresponded to the "urban" signature found in road deposited sediments. The low variations in lead isotope ratios found in the SPM for contrasting hydrological conditions demonstrated the occurrence of a single source of Pb contamination. These results demonstrate the need to better manage urban runoff during both flood and low precipitation events to prevent the supply of diffuse particle-bound contamination to rivers draining urban areas.
Assuntos
Sedimentos Geológicos/análise , Metais/análise , Poluentes Químicos da Água/análise , Poluentes Radioativos da Água/análise , Agricultura , Monitoramento Ambiental/métodos , Inundações , França , Sedimentos Geológicos/química , Isótopos/análise , Chumbo/análise , Cinza Radioativa , Radioisótopos/análise , Rios/química , UrbanizaçãoRESUMO
Fine sediment transport in rivers is exacerbated during flood events. These particles may convey various contaminants (i.e. metals, pathogens, industrial chemicals, etc.), and significantly impact water quality. The exceptional June 2016 flood of the Seine River (catchment area: 65â¯000â¯km2, France), potentially mobilized and deposited contaminated materials throughout the Paris region. Flood sediment deposits (nâ¯=â¯29) were collected along the Seine River and its main tributaries upstream (Yonne, Loing and Marne Rivers) and downstream of Paris (Oise and Eure Rivers). Fallout radionuclides (137Cs, 7Be) were measured to characterize the sources of the material transiting the river, while trace elements (e.g. Cr, Ni, Zn, Cu, As, Cd, Sb, Pb, Tl, Ag) and stable lead isotopes (206Pb/207Pb) were analyzed to quantify the contamination of sediment transported during the flood. In upper sections of the Seine River, sediment mainly originated from the remobilization of particles with a well-balanced contribution of surface and subsurface sources. In the upstream tributaries, sediment almost exclusively originated from the remobilization of subsurface particles. In Paris and downstream of Paris, recently eroded particles and surface sources dominated, suggesting particles were mainly supplied by urban runoff and the erosion of agricultural soils. The highest metal concentrations and Enrichment Factors (EF) were found in the sediment collected in the Loing, Orge and Yvette upstream tributaries. Although these inputs were diluted in the Seine River, an increase in elemental concentrations was observed, progressing downstream through Paris. However, EFs in sediment collected along the Seine River were lower or in the same range of values sampled over the last several decades, reflecting the progressive decontamination of the urbanized Seine River basin.
Assuntos
Monitoramento Ambiental , Inundações , Metais/análise , Rios/química , Poluentes Químicos da Água/análise , Agricultura , Berílio , Radioisótopos de Césio , França , Sedimentos Geológicos/química , Indústrias , Isótopos , Radioisótopos , UrbanizaçãoRESUMO
The activity of environmental radionuclides ((7)Be, (210)Pb and (137)Cs) was monitored in nested catchments, inside the Seine River basin. Suspended matter data was collected at 8 different watersheds, ranging from order 1 to order 7, and ranging in size over 4 orders of magnitude. Suspended matter was analyzed for (210)Pb, (137)Cs and (7)Be, and used to calculate the flux of sediments out of each watershed. Monthly atmospheric flux data of (210)Pb and (7)Be was analyzed to assess the input flux of each into the watersheds, taking into account the rainfall during sampling periods. Taking advantage of the different half-lives of (7)Be (53 days) and (210)Pb (22 years), a two-box model was built for each of the catchments following a methodology previously developed by Dominik et al. [Dominik J, Burrus D, Vernet JP. Transport of the environmental radionuclides in alpine watershed. Earth Planet Sci Letters 1987; 84: 165-180.]. The model divides the watershed into a soil box and a rapid reservoir and provides insight into the removal rate of suspended matter from the surrounding watershed. The model enables the assessment of the surface area and the residence time of slow and rapid reservoirs to describe the fate of contaminants of atmospheric origin inside the river basin. The model was improved by considering the dissolved fraction in the total flux and adding the (137)Cs inventory as an additional constraint. The effects of these changes are discussed. Residence times in the soil box, characterized by low transport velocity, range between 4800 years at Melarchez (order 1) to about 30000 years at Andresy and Poses (order 7). They remain constant in each watershed over a large range of variation of atmospheric fluxes of (7)Be and (210)Pb during the whole study, but are sensitive to SM variations. The residence time in the rapid box, which includes the surface of the river and immediate surroundings, is less than one year, while its surface area is in the range 0.6% to 2.2% of the total catchment area. They are sensitive to (7)Be atmospheric flux variations. The two-box model was used to estimate the amount of the radionuclides in each reservoir. Inventories appear to be constant from one watershed to the next. The (7)Be inventory ratio in the rapid and slow boxes expresses the rate of particle-reactive atmospheric pollutants that will be rapidly delivered to the river.
Assuntos
Berílio/análise , Radioisótopos de Césio/análise , Radioisótopos de Chumbo/análise , Monitoramento de Radiação/métodos , Rios/química , Poluentes Radioativos da Água/análise , França , Fatores de TempoRESUMO
Soil erosion supplies large quantities of sediments to rivers of Southeastern Asia. It reduces soil fertility of agro-ecosystems located on hillslopes, and it degrades, downstream, water resource quality and leads to the siltation of reservoirs. An increase in the surface area covered with commercial perennial monocultures such as teak plantations is currently observed at the expanse of traditional slash-and-burn cultivation systems in steep montane environments of these regions. The impacts of land-use change on the hydrological response and sediment yields have been investigated in a representative catchment of Laos monitored for 13 years. After the gradual conversion of rice-based shifting cultivation to teak plantation-based systems, overland flow contribution to stream flow increased from 16 to 31% and sediment yield raised from 98 to 609 Mg km-2. This result is explained by the higher kinetic energy of raindrops falling from the canopy, the virtual absence of understorey vegetation cover to dissipate drop energy and the formation of an impermeable surface crust accelerating the formation and concentration of overland flow. The 25-to-50% lower 137Cs activities measured in soils collected under mature teak plantations compared to soils under other land uses illustrate the severity of soil erosion processes occurring in teak plantations.
RESUMO
Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. High suspended sediment loads, often generated from eroding agricultural landscapes, are known to degrade downstream environments. Accordingly, there is a need to understand soil erosion dynamics during flood events. Suspended sediment was therefore sampled in the river network and at tile drain outlets during five flood events in a lowland drained catchment in France. Source and sediment fallout radionuclide concentrations (7Be, 210Pbxs) were measured to quantify both the fraction of recently eroded particles transported during flood events and their residence time. Results indicate that the mean fraction of recently eroded sediment, estimated for the entire Louroux catchment, increased from 45 ± 20% to 80 ± 20% between December 2013 and February 2014, and from 65 ± 20% to 80 ± 20% in January 2016. These results demonstrate an initial flush of sediment previously accumulated in the river channel before the increasing supply of sediment recently eroded from the hillslopes during subsequent events. This research highlights the utility of coupling continuous river monitoring and fallout radionuclide measurements to increase our understanding of sediment dynamics and improve the management of soil and water resources in agricultural catchments.
RESUMO
Fallout from the Fukushima Dai-ichi nuclear power plant accident resulted in a 3000-km2 radioactive contamination plume. Here, we model the progressive dilution of the radiocesium contamination in 327 sediment samples from two neighboring catchments with different timing of soil decontamination. Overall, we demonstrate that there has been a ~90% decrease of the contribution of upstream contaminated soils to sediment transiting the coastal plains between 2012 (median - M - contribution of 73%, mean absolute deviation - MAD - of 27%) and 2015 (M 9%, MAD 6%). The occurrence of typhoons and the progress of decontamination in different tributaries of the Niida River resulted in temporary increases in local contamination. However, the much lower contribution of upstream contaminated soils to coastal plain sediment in November 2015 demonstrates that the source of the easily erodible, contaminated material has potentially been removed by decontamination, diluted by subsoils, or eroded and transported to the Pacific Ocean.
RESUMO
Soil erosion often supplies high sediment loads to rivers, degrading water quality and contributing to the siltation of reservoirs and lowland river channels. These impacts are exacerbated in agricultural catchments where modifications in land management and agricultural practices were shown to accelerate sediment supply. In this study, sediment sources were identified with a novel tracing approach combining cesium ((137)Cs) and strontium isotopes ((87)Sr/(86)Sr) in the Louroux pond, at the outlet of a lowland cultivated catchment (24km(2), Loire River basin, France) representative of drained agricultural areas of Northwestern Europe. Surface soil (n=36) and subsurface channel bank (n=17) samples were collected to characterize potential sources. Deposited sediment (n=41) was sampled across the entire surface of the pond to examine spatial variation in sediment deposits. In addition, a 1.10m sediment core was sampled in the middle of the pond to reconstruct source variations throughout time. (137)Cs was used to discriminate between surface and subsurface sources, whereas (87)Sr/(86)Sr ratios discriminated between lithological sources. A distribution modeling approach quantified the relative contribution of these sources to the sampled sediment. Results indicate that surface sources contributed to the majority of pond (µ 82%, σ 1%) and core (µ 88%, σ 2%) sediment with elevated subsurface contributions modeled near specific sites close to the banks of the Louroux pond. Contributions of the lithological sources were well mixed in surface sediment across the pond (i.e., carbonate sediment contribution, µ 48%, σ 1% and non-carbonate sediment contribution, µ 52%, σ 3%) although there were significant variations of these source contributions modeled for the sediment core between 1955 and 2013. These fluctuations reflect both the progressive implementation of land consolidation schemes in the catchment and the eutrophication of the pond. This original sediment fingerprinting study demonstrates the potential of combining radionuclide and strontium isotopic geochemistry measurements to quantify sediment sources in cultivated catchments.
RESUMO
Large quantities of radiocesium were deposited across a 3000 km(2) area northwest of the Fukushima Dai-ichi nuclear power plant after the March 2011 accident. Although many studies have investigated the fate of (137)Cs in soil in the months following the accident, the depth distribution of this radioactive contaminant in rice paddy fields requires further examination after the typhoons that occurred in this region. Such investigations will help minimize potential human exposure in rice paddy fields. Radionuclide activity concentrations, organic content and particle size were analysed in 10 soil cores sampled from paddy fields in November 2013, 20 km north of the Fukushima power plant. Our results demonstrate limited depth migration of (137)Cs with the majority concentrated in the uppermost layers of soils (<5 cm). More than 30 months after the accident, between 46.8 and 98.7% of the total (137)Cs inventories was found within the top 5 cm of the soil surface, despite cumulative rainfall totalling 3300 mm. Furthermore, there were no significant correlations between (137)Cs depth distribution and the other parameters. We attributed the maximum depth penetration of (137)Cs to grass cutting (73.6-98.5% of (137)Cs in the upper 5 cm) and farming operations (tillage - 46.8-51.6% of (137)Cs in the upper 5 cm). As this area is exposed to erosive events, ongoing decontamination works may increase soil erodibility. We therefore recommend the rapid removal of the uppermost - contaminated - layer of the soil after removing the vegetation to avoid erosion of contaminated material during the subsequent rainfall events. Further analysis is required to thoroughly understand the impacts of erosion on the redistribution of radiocesium throughout the Fukushima Prefecture.
Assuntos
Radioisótopos de Césio/análise , Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Solo/química , Agricultura , Acidente Nuclear de Fukushima , Japão , Oryza/crescimento & desenvolvimentoRESUMO
Silver-110 metastable ((110m)Ag) has been far less investigated than other anthropogenic radionuclides, although it has the potential to accumulate in plants and animal tissues. It is continuously produced by nuclear power plants in normal conditions, but emitted in much larger quantities in accidental conditions facilitating its detection, which allows the investigation of its behaviour in the environment. We analysed (110m)Ag in soil and river drape sediment (i.e., mud drapes deposited on channel-bed sand) collected within coastal catchments contaminated in Fukushima Prefecture (Japan) after the Fukushima Dai-ichi Nuclear Power Plant accident that occurred on 11 March 2011. Several field experiments were conducted to document radiosilver behaviour in the terrestrial environment, with a systematic comparison to the more documented radiocesium behaviour. Results show a similar and low mobility for both elements in soils and a strong affinity with the clay fraction. Measurements conducted on sediment sequences accumulated in reservoirs tend to confirm a comparable deposition of those radionuclides even after their redistribution due to erosion and deposition processes. Therefore, as the (110m)Ag:(137)Cs initial activity ratio varied in soils across the area, we justified the relevance of using this tool to track the dispersion of contaminated sediment from the main inland radioactive pollution plume generated by FDNPP accident.
Assuntos
Acidente Nuclear de Fukushima , Sedimentos Geológicos/química , Monitoramento de Radiação , Radioisótopos/análise , Prata/análise , Poluentes Radioativos do Solo/análise , Poluentes Radioativos da Água/análise , Japão , Radioisótopos/química , Prata/química , Poluentes Radioativos do Solo/química , Espectrometria gama , Poluentes Radioativos da Água/químicaRESUMO
Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in soils and their subsequent release in rivers constitute a major environmental and public health problem in industrialized countries. In the Seine River basin (France), some PAHs exceed the target concentrations, and the objectives of good chemical status required by the European Water Framework Directive might not be achieved. This investigation was conducted in an upstream subcatchment where atmospheric fallout (n=42), soil (n=33), river water (n=26) and sediment (n=101) samples were collected during one entire hydrological year. PAH concentrations in atmospheric fallout appeared to vary seasonally and to depend on the distance to urban areas. They varied between 60 ng·L(-1) (in a remote site during autumn) and 2,380 ng·L(-1) (in a built-up area during winter). PAH stocks in soils of the catchment were estimated based on land use, as mean PAH concentrations varied between 110 ng·g(-1) under woodland and 2,120 ng·g(-1) in built-up areas. They ranged from 12 to 220 kg·km(-2). PAH contamination in the aqueous phase of rivers remained homogeneous across the catchment (72 ± 38 ng·L(-1)). In contrast, contamination of suspended solid was heterogeneous depending on hydrological conditions and population density in the drainage area. Moreover, PAH concentrations appeared to be higher in sediment (230-9,210 ng·g(-1)) than in the nearby soils. Annual mass balance calculation conducted at the catchment scale showed that current PAH losses were mainly due to dissipation (biodegradation, photo-oxidation and volatilization) within the catchments (about 80%) whereas exports due to soil erosion and riverine transport appeared to be of minor importance. Based on the calculated fluxes, PAHs appeared to have long decontamination times in soils (40 to 1,850 years) thereby compromising the achievement of legislative targets. Overall, the study highlighted the major role of legacy contamination that supplied the bulk of PAHs that are still found nowadays in the environment.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Rios/química , Poluentes Químicos da Água/análise , Descontaminação , Monitoramento Ambiental , Recuperação e Remediação Ambiental , França , Sedimentos Geológicos/químicaRESUMO
Summer typhoons and spring snowmelt led to the riverine spread of continental Fukushima fallout to the coastal plains of Northeastern Japan and the Pacific Ocean. Four fieldwork campaigns based on measurement of radioactive dose rates in fine riverine sediment that has recently deposited on channel bed-sand were conducted between November 2011 and May 2013 to document the spread of fallout by rivers. After a progressive decrease in the fresh riverine sediment doses rates between 2011 and early spring in 2013, a fifth campaign conducted in November 2013 showed that they started to increase again after the occurrence of violent typhoons. We show that this increase in dose rates was mostly due to remobilization of contaminated material that was temporarily stored in river channels or, more importantly, in dam reservoirs of the region during the typhoons. In addition, supply of particles from freshly eroded soils in autumn 2013 was the most important in areas where decontamination works are under progress. Our results underline the need to monitor the impact of decontamination works and dam releases in the region, as they may provide a continuous source of radioactive contamination to the coastal plains and the Pacific Ocean during the coming years.
RESUMO
Various sources supply PAHs that accumulate in soils. The methodology we developed provided an evaluation of the contribution of local sources (road traffic, local industries) versus remote sources (long range atmospheric transport, fallout and gaseous exchanges) to PAH stocks in two contrasting subcatchments (46-614 km²) of the Seine River basin (France). Soil samples (n = 336) were analysed to investigate the spatial pattern of soil contamination across the catchments and an original combination with radionuclide measurements provided new insights into the evolution of the contamination with depth. Relationships between PAH concentrations and the distance to the potential sources were modelled. Despite both subcatchments are mainly rural, roadside areas appeared to concentrate 20% of the contamination inside the catchment while a local industry was found to be responsible for up to 30% of the stocks. Those results have important implications for understanding and controlling PAH contamination in rural areas of early-industrialized regions.
Assuntos
Monitoramento Ambiental/métodos , Modelos Químicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Atmosfera/química , Poluição Ambiental/estatística & dados numéricos , França , Indústrias , Rios/química , Solo/química , Meios de TransporteRESUMO
Despite bans on PCB use since 1975 (open systems) and 1987 (closed systems), concentrations of PCBs in riverine fish in France continue to exceed regulatory levels. We present historical records of PCB concentrations in sediment cores from eight sites on the Rhône River, from Lake Geneva to the Mediterranean Sea. Maximum PCB concentrations (sum of seven indicator PCBs) increase downstream, from 11.50 µg/kg at the most upstream site to 417.1 µg/kg at the most downstream site. At some sites peak concentrations occur in sediment deposited as recently as the 2000s. Hierarchical clustering (five clusters) identified differences in PCB congener profiles within and between sites. Exponential models fit to decadal time windows indicate that rapid reductions in concentrations during about 1990-2000 have slowed, and that it might be decades before target concentrations in sediment that correspond to regulatory thresholds in fish will be reached at some sites.
Assuntos
Monitoramento Ambiental , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Animais , Peixes/metabolismo , França , Bifenilos Policlorados/metabolismo , Rios/química , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/estatística & dados numéricosRESUMO
Measurement of radioactive dose rates in fine sediment that has recently deposited on channel bed-sand provides a solution to address the lack of continuous river monitoring in Fukushima Prefecture after Fukushima Dai-ichi nuclear power plant (FDNPP) accident. We show that coastal rivers of Eastern Fukushima Prefecture were rapidly supplied with sediment contaminated by radionuclides originating from inland mountain ranges, and that this contaminated material was partly exported by typhoons to the coastal plains as soon as by November 2011. This export was amplified during snowmelt and typhoons in 2012. In 2013, contamination levels measured in sediment found in the upper parts of the catchments were almost systematically lower than the ones measured in nearby soils, whereas their contamination was higher in the coastal plains. We thereby suggest that storage of contaminated sediment in reservoirs and in coastal sections of the river channels now represents the most crucial issue.