Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(2): 817-22, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24379359

RESUMO

Type III secretion machines are essential for the biology of many bacteria that are pathogenic or symbiotic for animals, plants, or insects. They exert their function by delivering bacterial effector proteins into target eukaryotic cells. The core component of these machines is the needle complex, a multiprotein structure that spans the bacterial envelope and serves as a conduit for proteins that transit this secretion pathway. The needle complex is composed of a multiring base embedded in the bacterial envelope and a filament-like structure, the needle, that projects from the bacterial surface and is linked to the base by the inner rod. Assembly of the needle complex proceeds in a step-wise fashion that is initiated by the assembly of the base and is followed by the export of the building subunits for the needle and inner rod substructures. Once assembled, the needle complex reprograms its specificity and becomes competent for the secretion of effector proteins. Here through genetic, biochemical, and electron microscopy analyses of the Salmonella inner rod protein subunit PrgJ we present evidence that the assembly of the inner rod dictates the timing of substrate switching and needle length. Furthermore, the identification of mutations in PrgJ that specifically alter the hierarchy of protein secretion provides additional support for a complex role of the inner rod substructure in type III secretion.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Proteínas de Membrana/metabolismo , Modelos Moleculares , Conformação Proteica , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/química , Proteínas de Membrana/química , Microscopia Eletrônica de Transmissão , Salmonella typhimurium/ultraestrutura
2.
PLoS Pathog ; 6(4): e1000824, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20368966

RESUMO

The correct organization of single subunits of multi-protein machines in a three dimensional context is critical for their functionality. Type III secretion systems (T3SS) are molecular machines with the capacity to deliver bacterial effector proteins into host cells and are fundamental for the biology of many pathogenic or symbiotic bacteria. A central component of T3SSs is the needle complex, a multiprotein structure that mediates the passage of effector proteins through the bacterial envelope. We have used cryo electron microscopy combined with bacterial genetics, site-specific labeling, mutational analysis, chemical derivatization and high-resolution mass spectrometry to generate an experimentally validated topographic map of a Salmonella typhimurium T3SS needle complex. This study provides insights into the organization of this evolutionary highly conserved nanomachinery and is the basis for further functional analysis.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/ultraestrutura , Salmonella typhimurium/química , Salmonella typhimurium/ultraestrutura , Microscopia Crioeletrônica , Substâncias Macromoleculares
3.
mBio ; 6(5): e01459-15, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26463164

RESUMO

UNLABELLED: Type III secretion systems (T3SSs) are multiprotein machines employed by many Gram-negative bacteria to inject bacterial effector proteins into eukaryotic host cells to promote bacterial survival and colonization. The core unit of T3SSs is the needle complex, a supramolecular structure that mediates the passage of the secreted proteins through the bacterial envelope. A distinct feature of the T3SS is that protein export occurs in a strictly hierarchical manner in which proteins destined to form the needle complex filament and associated structures are secreted first, followed by the secretion of effectors and the proteins that will facilitate their translocation through the target host cell membrane. The secretion hierarchy is established by complex mechanisms that involve several T3SS-associated components, including the "switch protein," a highly conserved, inner membrane protease that undergoes autocatalytic cleavage. It has been proposed that the autocleavage of the switch protein is the trigger for substrate switching. We show here that autocleavage of the Salmonella enterica serovar Typhimurium switch protein SpaS is an unregulated process that occurs after its folding and before its incorporation into the needle complex. Needle complexes assembled with a precleaved form of SpaS function in a manner indistinguishable from that of the wild-type form. Furthermore, an engineered mutant of SpaS that is processed by an external protease also displays wild-type function. These results demonstrate that the cleavage event per se does not provide a signal for substrate switching but support the hypothesis that cleavage allows the proper conformation of SpaS to render it competent for its switching function. IMPORTANCE: Bacterial interaction with eukaryotic hosts often involves complex molecular machines for targeted delivery of bacterial effector proteins. One such machine, the type III secretion system of some Gram-negative bacteria, serves to inject a multitude of structurally diverse bacterial proteins into the host cell. Critical to the function of these systems is their ability to secrete proteins in a strict hierarchical order, but it is unclear how the mechanism of switching works. Central to the switching mechanism is a highly conserved inner membrane protease that undergoes autocatalytic cleavage. Although it has been suggested previously that the autocleavage event is the trigger for substrate switching, we show here that this is not the case. Rather, our results show that cleavage allows the proper conformation of the protein to render it competent for its switching function. These findings may help develop inhibitors of type III secretion machines that offer novel therapeutic avenues to treat various infectious diseases.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Salmonella typhimurium/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteólise , Especificidade por Substrato
4.
Appl Environ Microbiol ; 68(12): 5956-64, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12450816

RESUMO

Genetic studies with Burkholderia cepacia complex isolates are hampered by the limited availability of cloning vectors and by the inherent resistance of these isolates to the most common antibiotics used for genetic selection. Also, some of the promoters widely employed for gene expression in Escherichia coli are inefficient in B. cepacia. In this study, we have utilized the backbone of the vector pME6000, a derivative of the pBBR1 plasmid that was originally isolated from Bordetella bronchiseptica, to construct a set of vectors useful for gene expression in B. cepacia. These vectors contain either the constitutive promoter of the S7 ribosomal protein gene from Burkholderia sp. strain LB400 or the arabinose-inducible P(BAD) promoter from E. coli. Promoter sequences were placed immediately upstream of multiple cloning sites in combination with the minimal sequence of pME6000 required for plasmid maintenance and mobilization. The functionality of both vectors was assessed by cloning the enhanced green fluorescent protein gene (e-gfp) and determining the levels of enhanced green fluorescent protein expression and fluorescence emission for a variety of clinical and environmental isolates of the B. cepacia complex. We also demonstrate that B. cepacia carrying these constructs can readily be detected intracellularly by fluorescence microscopy following the infection of Acanthamoeba polyphaga.


Assuntos
Burkholderia cepacia/genética , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/genética , Fluorescência , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Plasmídeos
5.
Microbiology (Reading) ; 149(Pt 4): 961-971, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12686638

RESUMO

Burkholderia cepacia is an opportunistic respiratory pathogen in cystic fibrosis patients. One highly transmissible and virulent clone belonging to genomovar IIIa expresses pili with unique cable morphology, which enable the bacterium to bind cytokeratin 13 in epithelial cells. The cblA gene, encoding the major pilin subunit, is often used as a DNA marker to identify potentially virulent isolates. The authors have now cloned and sequenced four additional genes, cblB, cblC, cblD and cblS, in the pilus gene cluster. This work shows that the products of the first four genes of the cbl operon, cblA, cblB, cblC and cblD, are sufficient for pilus assembly on the bacterial surface. Deletion of cblB abrogated pilus assembly and compromised the stability of the CblA protein in the periplasm. In contrast, deletion of cblD resulted in no pili, but there was no effect on expression and stability of the CblA protein subunit. These results, together with protein sequence homologies, predicted structural analyses, and the presence of typical amino acid motifs, are consistent with the assignment of functional roles for CblB as a chaperone that stabilizes the major pilin subunit in the periplasm, and CblD as the initiator of pilus biogenesis. It is also shown that expression of Cbl pili in Escherichia coli is not sufficient to mediate the binding of bacteria to the epithelial cell receptor cytokeratin 13, and that B. cepacia still binds to cytokeratin 13 in the absence of Cbl pili, suggesting that additional bacterial components are required for effective binding.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Burkholderia cepacia/genética , Burkholderia cepacia/metabolismo , Burkholderia cepacia/patogenicidade , Proteínas de Fímbrias/biossíntese , Proteínas de Fímbrias/química , Regulação Bacteriana da Expressão Gênica , Humanos , Queratinas/metabolismo , Microscopia Eletrônica , Dados de Sequência Molecular , Família Multigênica , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa