Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharmacol ; 75(4): 762-73, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19122005

RESUMO

Kv1.3 potassium channels maintain the membrane potential of effector memory (T(EM)) T cells that are important mediators of multiple sclerosis, type 1 diabetes mellitus, and rheumatoid arthritis. The polypeptide ShK-170 (ShK-L5), containing an N-terminal phosphotyrosine extension of the Stichodactyla helianthus ShK toxin, is a potent and selective blocker of these channels. However, a stability study of ShK-170 showed minor pH-related hydrolysis and oxidation byproducts that were exacerbated by increasing temperatures. We therefore engineered a series of analogs to minimize the formation of these byproducts. The analog with the greatest stability, ShK-192, contains a nonhydrolyzable phosphotyrosine surrogate, a methionine isostere, and a C-terminal amide. ShK-192 shows the same overall fold as ShK, and there is no evidence of any interaction between the N-terminal adduct and the rest of the peptide. The docking configuration of ShK-192 in Kv1.3 shows the N-terminal para-phosphonophenylalanine group lying at the junction of two channel monomers to form a salt bridge with Lys(411) of the channel. ShK-192 blocks Kv1.3 with an IC(50) of 140 pM and exhibits greater than 100-fold selectivity over closely related channels. After a single subcutaneous injection of 100 microg/kg, approximately 100 to 200 pM concentrations of active peptide is detectable in the blood of Lewis rats 24, 48, and 72 h after the injection. ShK-192 effectively inhibits the proliferation of T(EM) cells and suppresses delayed type hypersensitivity when administered at 10 or 100 microg/kg by subcutaneous injection once daily. ShK-192 has potential as a therapeutic for autoimmune diseases mediated by T(EM) cells.


Assuntos
Canal de Potássio Kv1.3/antagonistas & inibidores , Peptídeos/síntese química , Bloqueadores dos Canais de Potássio/síntese química , Linfócitos T/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Feminino , Humanos , Canal de Potássio Kv1.3/fisiologia , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Engenharia de Proteínas/métodos , Ratos , Ratos Endogâmicos Lew , Linfócitos T/efeitos dos fármacos
2.
Biochemistry ; 40(51): 15528-37, 2001 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-11747428

RESUMO

ShK toxin, a potassium channel blocker from the sea anemone Stichodactyla helianthus, is a 35-residue polypeptide cross-linked by 3 disulfide bridges. In an effort to generate truncated peptidic analogues of this potent channel blocker, we have evaluated three analogues, one in which the native sequence was truncated and then stabilized by the introduction of additional covalent links (a non-native disulfide and two lactam bridges), and two in which non-native structural scaffolds stabilized by disulfide and/or lactam bridges were modified to include key amino acid residues from the native toxin. The effect of introducing a lactam bridge in the first helix of ShK toxin (to create cyclo14/18[Lys14,Asp18]ShK) was also examined to confirm that this modification was compatible with activity. All four analogues were tested in vitro for their ability to block Kv1.3 potassium channels in Xenopus oocytes, and their solution structures were determined using 1H NMR spectroscopy. The lactam bridge in full-length ShK is well tolerated, with only a 5-fold reduction in binding to Kv1.3. The truncated and stabilized analogue was inactive, apparently due to a combination of slight deviations from the native structure and alterations to side chains required for binding. One of the peptide scaffolds was also inactive because it failed to adopt the required structure, but the other had a K(d) of 92 microM. This active peptide incorporated mimics of Lys22 and Tyr23, which are essential for activity in ShK, and an Arg residue that could mimic Arg11 or Arg24 in the native toxin. Modification of this peptide should produce a more potent, low molecular weight peptidic analogue which will be useful not only for further in vitro and in vivo studies of the effect of blocking Kv1.3, but also for mapping the interactions with the pore and vestibule of this K(+) channel that are required for potent blockade.


Assuntos
Venenos de Cnidários/síntese química , Fragmentos de Peptídeos/síntese química , Bloqueadores dos Canais de Potássio , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Sequência de Aminoácidos , Animais , Venenos de Cnidários/química , Venenos de Cnidários/metabolismo , Canal de Potássio Kv1.3 , Células L , Camundongos , Dados de Sequência Molecular , Oócitos/fisiologia , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Canais de Potássio/metabolismo , Ligação Proteica , Anêmonas-do-Mar/química , Transfecção , Xenopus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa