Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 142(4): 2143, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29092568

RESUMO

This paper deals with the loss of coherence in underwater direction-of-arrival estimation. The coherence loss, which typically arises from dynamical ocean fluctuations and unknown environmental parameters, may take the form of a multiplicative colored random noise applied to the measured acoustic signal. This specific multiplicative noise needs to be addressed with methodological developments. This paper proposes a weighting process that locally mitigates the effects of the coherence loss. More specially, a set of coherent sub-antennas is designed from the so-called Mutual Coherence Function (MCF). The assessed source position results from the combination of each sub-antenna by using a mixed norm. Two experiments are considered in the paper: either a random noise is sampled to simulate the effect of random ocean fluctuations, or a synthetic acoustic waveguide is used in which the coherence loss is due to some multipath interferences. It is shown that the weighting process allows for a decrease in the estimation error in comparison to a Conventional Beamformer (CB).

2.
J Cell Biol ; 212(1): 91-111, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26728857

RESUMO

Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth.


Assuntos
Neuritos/enzimologia , Transdução de Sinais , Análise Espaço-Temporal , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Camundongos , Neuritos/metabolismo , Fenótipo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa