Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Genet Sel Evol ; 56(1): 35, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698347

RESUMO

BACKGROUND: The theory of "metafounders" proposes a unified framework for relationships across base populations within breeds (e.g. unknown parent groups), and base populations across breeds (crosses) together with a sensible compatibility with genomic relationships. Considering metafounders might be advantageous in pedigree best linear unbiased prediction (BLUP) or single-step genomic BLUP. Existing methods to estimate relationships across metafounders Γ are not well adapted to highly unbalanced data, genotyped individuals far from base populations, or many unknown parent groups (within breed per year of birth). METHODS: We derive likelihood methods to estimate Γ . For a single metafounder, summary statistics of pedigree and genomic relationships allow deriving a cubic equation with the real root being the maximum likelihood (ML) estimate of Γ . This equation is tested with Lacaune sheep data. For several metafounders, we split the first derivative of the complete likelihood in a term related to Γ , and a second term related to Mendelian sampling variances. Approximating the first derivative by its first term results in a pseudo-EM algorithm that iteratively updates the estimate of Γ by the corresponding block of the H-matrix. The method extends to complex situations with groups defined by year of birth, modelling the increase of Γ using estimates of the rate of increase of inbreeding ( Δ F ), resulting in an expanded Γ and in a pseudo-EM+ Δ F algorithm. We compare these methods with the generalized least squares (GLS) method using simulated data: complex crosses of two breeds in equal or unsymmetrical proportions; and in two breeds, with 10 groups per year of birth within breed. We simulate genotyping in all generations or in the last ones. RESULTS: For a single metafounder, the ML estimates of the Lacaune data corresponded to the maximum. For simulated data, when genotypes were spread across all generations, both GLS and pseudo-EM(+ Δ F ) methods were accurate. With genotypes only available in the most recent generations, the GLS method was biased, whereas the pseudo-EM(+ Δ F ) approach yielded more accurate and unbiased estimates. CONCLUSIONS: We derived ML, pseudo-EM and pseudo-EM+ Δ F methods to estimate Γ in many realistic settings. Estimates are accurate in real and simulated data and have a low computational cost.


Assuntos
Cruzamento , Modelos Genéticos , Linhagem , Animais , Funções Verossimilhança , Cruzamento/métodos , Algoritmos , Ovinos/genética , Genômica/métodos , Simulação por Computador , Masculino , Feminino , Genótipo
2.
Genet Sel Evol ; 56(1): 34, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698373

RESUMO

Metafounders are a useful concept to characterize relationships within and across populations, and to help genetic evaluations because they help modelling the means and variances of unknown base population animals. Current definitions of metafounder relationships are sensitive to the choice of reference alleles and have not been compared to their counterparts in population genetics-namely, heterozygosities, FST coefficients, and genetic distances. We redefine the relationships across populations with an arbitrary base of a maximum heterozygosity population in Hardy-Weinberg equilibrium. Then, the relationship between or within populations is a cross-product of the form Γ b , b ' = 2 n 2 p b - 1 2 p b ' - 1 ' with p being vectors of allele frequencies at n markers in populations b and b ' . This is simply the genomic relationship of two pseudo-individuals whose genotypes are equal to twice the allele frequencies. We also show that this coding is invariant to the choice of reference alleles. In addition, standard population genetics metrics (inbreeding coefficients of various forms; FST differentiation coefficients; segregation variance; and Nei's genetic distance) can be obtained from elements of matrix Γ .


Assuntos
Frequência do Gene , Genética Populacional , Modelos Genéticos , Animais , Genética Populacional/métodos , Heterozigoto , Alelos , Genômica/métodos , Genótipo , Genoma
3.
Genet Sel Evol ; 56(1): 18, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459504

RESUMO

BACKGROUND: Validation by data truncation is a common practice in genetic evaluations because of the interest in predicting the genetic merit of a set of young selection candidates. Two of the most used validation methods in genetic evaluations use a single data partition: predictivity or predictive ability (correlation between pre-adjusted phenotypes and estimated breeding values (EBV) divided by the square root of the heritability) and the linear regression (LR) method (comparison of "early" and "late" EBV). Both methods compare predictions with the whole dataset and a partial dataset that is obtained by removing the information related to a set of validation individuals. EBV obtained with the partial dataset are compared against adjusted phenotypes for the predictivity or EBV obtained with the whole dataset in the LR method. Confidence intervals for predictivity and the LR method can be obtained by replicating the validation for different samples (or folds), or bootstrapping. Analytical confidence intervals would be beneficial to avoid running several validations and to test the quality of the bootstrap intervals. However, analytical confidence intervals are unavailable for predictivity and the LR method. RESULTS: We derived standard errors and Wald confidence intervals for the predictivity and statistics included in the LR method (bias, dispersion, ratio of accuracies, and reliability). The confidence intervals for the bias, dispersion, and reliability depend on the relationships and prediction error variances and covariances across the individuals in the validation set. We developed approximations for large datasets that only need the reliabilities of the individuals in the validation set. The confidence intervals for the ratio of accuracies and predictivity were obtained through the Fisher transformation. We show the adequacy of both the analytical and approximated analytical confidence intervals and compare them versus bootstrap confidence intervals using two simulated examples. The analytical confidence intervals were closer to the simulated ones for both examples. Bootstrap confidence intervals tend to be narrower than the simulated ones. The approximated analytical confidence intervals were similar to those obtained by bootstrapping. CONCLUSIONS: Estimating the sampling variation of predictivity and the statistics in the LR method without replication or bootstrap is possible for any dataset with the formulas presented in this study.


Assuntos
Genômica , Modelos Genéticos , Humanos , Genótipo , Reprodutibilidade dos Testes , Intervalos de Confiança , Linhagem , Genômica/métodos , Fenótipo
4.
Genet Sel Evol ; 55(1): 6, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690938

RESUMO

BACKGROUND: Reliabilities of best linear unbiased predictions (BLUP) of breeding values are defined as the squared correlation between true and estimated breeding values and are helpful in assessing risk and genetic gain. Reliabilities can be computed from the prediction error variances for models with a single base population but are undefined for models that include several base populations and when unknown parent groups are modeled as fixed effects. In such a case, the use of metafounders in principle enables reliabilities to be derived. METHODS: We propose to compute the reliability of the contrast of an individual's estimated breeding value with that of a metafounder based on the prediction error variances of the individual and the metafounder, their prediction error covariance, and their genetic relationship. Computation of the required terms demands only little extra work once the sparse inverse of the mixed model equations is obtained, or they can be approximated. This also allows the reliabilities of the metafounders to be obtained. We studied the reliabilities for both BLUP and single-step genomic BLUP (ssGBLUP), using several definitions of reliability in a large dataset with 1,961,687 dairy sheep and rams, most of which had phenotypes and among which 27,000 rams were genotyped with a 50K single nucleotide polymorphism (SNP) chip. There were 23 metafounders with progeny sizes between 100,000 and 2000 individuals. RESULTS: In models with metafounders, directly using the prediction error variance instead of the contrast with a metafounder leads to artificially low reliabilities because they refer to a population with maximum heterozygosity. When only one metafounder is fitted in the model, the reliability of the contrast is shown to be equivalent to the reliability of the individual in a model without metafounders. When there are several metafounders in the model, using a contrast with the oldest metafounder yields reliabilities that are on a meaningful scale and very close to reliabilities obtained from models without metafounders. The reliabilities using contrasts with ssGBLUP also resulted in meaningful values. CONCLUSIONS: This work provides a general method to obtain reliabilities for both BLUP and ssGBLUP when several base populations are included through metafounders.


Assuntos
Genoma , Modelos Genéticos , Animais , Masculino , Ovinos , Reprodutibilidade dos Testes , Genótipo , Genômica/métodos , Fenótipo , Linhagem
5.
J Anim Breed Genet ; 140(1): 60-78, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35946919

RESUMO

Single-step genomic BLUP (ssGBLUP) relies on the combination of the genomic ( G $$ \mathbf{G} $$ ) and pedigree relationship matrices for all ( A $$ \mathbf{A} $$ ) and genotyped ( A 22 $$ {\mathbf{A}}_{22} $$ ) animals. The procedure ensures G $$ \mathbf{G} $$ and A 22 $$ {\mathbf{A}}_{22} $$ are compatible so that both matrices refer to the same genetic base ('tuning'). Then G $$ \mathbf{G} $$ is combined with a proportion of A 22 $$ {\mathbf{A}}_{22} $$ ('blending') to avoid singularity problems and to account for the polygenic component not accounted for by markers. This computational procedure has been implemented in the reverse order (blending before tuning) following the sequential research developments. However, blending before tuning may result in less optimal tuning because the blended matrix already contains a proportion of A 22 $$ {\mathbf{A}}_{22} $$ . In this study, the impact of 'tuning before blending' was compared with 'blending before tuning' on genomic estimated breeding values (GEBV), single nucleotide polymorphism (SNP) effects and indirect predictions (IP) from ssGBLUP using American Angus Association and Holstein Association USA, Inc. data. Two slightly different tuning methods were used; one that adjusts the mean diagonals and off-diagonals of G $$ \mathbf{G} $$ to be similar to those in A 22 $$ {\mathbf{A}}_{22} $$ and another one that adjusts based on the average difference between all elements of G $$ \mathbf{G} $$ and A 22 $$ {\mathbf{A}}_{22} $$ . Over 6 million Angus growth records and 5.9 million Holstein udder depth records were available. Genomic information was available on 51,478 Angus and 105,116 Holstein animals. Average realized relationship estimates among groups of animals were similar across scenarios. Scatterplots show that GEBV, SNP effects and IP did not noticeably change for all animals in the evaluation regardless of the order of computations and when using blending parameter of 0.05. Formulas were derived to determine the blending parameter that maximizes changes in the genomic relationship matrix and GEBV when changing the order of blending and tuning. Algebraically, the change is maximized when the blending parameter is equal to 0.5. Overall, tuning G $$ \mathbf{G} $$ before blending, regardless of blending parameter used, had a negligible impact on genomic predictions and SNP effects in this study.


Assuntos
Genômica , Animais
6.
Genet Sel Evol ; 54(1): 10, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35114933

RESUMO

BACKGROUND: Multiple breed evaluation using genomic prediction includes the use of data from multiple populations, or from parental breeds and crosses, and is expected to lead to better genomic predictions. Increased complexity comes from the need to fit non-additive effects such as dominance and/or genotype-by-environment interactions. In these models, marker effects (and breeding values) are modelled as correlated between breeds, which leads to multiple trait formulations that are based either on markers [single nucleotide polymorphism best linear unbiased prediction (SNP-BLUP)] or on individuals [genomic(G)BLUP)]. As an alternative, we propose the use of generalized least squares (GLS) followed by backsolving of marker effects using selection index (SI) theory. RESULTS: All investigated options have advantages and inconveniences. The SNP-BLUP yields marker effects directly, which are useful for indirect prediction and for planned matings, but is very large in number of equations and is structured in dense and sparse blocks that do not allow for simple solving. GBLUP uses a multiple trait formulation and is very general, but results in many equations that are not used, which increase memory needs, and is also structured in dense and sparse blocks. An alternative formulation of GBLUP is more compact but requires tailored programming. The alternative of solving by GLS + SI is the least consuming, both in number of operations and in memory, and it uses only single dense blocks. However, it requires dedicated programming. Computational complexity problems are exacerbated when more than additive effects are fitted, e.g. dominance effects or genotype x environment interactions. CONCLUSIONS: As multi-breed predictions become more frequent and non-additive effects are more often included, standard equations for genomic prediction based on Henderson's mixed model equations become less practical and may need to be replaced by more efficient (although less general) approaches such as the GLS + SI approach proposed here.


Assuntos
Genética Populacional , Genoma , Metagenômica , Modelos Genéticos , Cruzamento , Genômica , Genótipo , Polimorfismo de Nucleotídeo Único
7.
Genet Sel Evol ; 54(1): 69, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273127

RESUMO

BACKGROUND: At the beginning of genomic selection, some Chinese companies genotyped pigs with different single nucleotide polymorphism (SNP) arrays. The obtained genomic data are then combined and to do this, several imputation strategies have been developed. Usually, only additive genetic effects are considered in genetic evaluations. However, dominance effects that may be important for some traits can be fitted in a mixed linear model as either 'classical' or 'genotypic' dominance effects. Their influence on genomic evaluation has rarely been studied. Thus, the objectives of this study were to use a dataset from Canadian Yorkshire pigs to (1) compare different strategies to combine data from two SNP arrays (Affymetrix 55K and Illumina 42K) and identify the most appropriate strategy for genomic evaluation and (2) evaluate the impact of dominance effects (classical' and 'genotypic') and inbreeding depression effects on genomic predictive abilities for average daily gain (ADG), backfat thickness (BF), loin muscle depth (LMD), days to 100 kg (AGE100), and the total number of piglets born (TNB) at first parity. RESULTS: The reliabilities obtained with the additive genomic models showed that the strategy used to combine data from two SNP arrays had little impact on genomic evaluations. Models with classical or genotypic dominance effect showed similar predictive abilities for all traits. For ADG, BF, LMD, and AGE100, dominance effects accounted for a small proportion (2 to 11%) of the total genetic variance, whereas for TNB, dominance effects accounted for 11 to 20%. For all traits, the predictive abilities of the models increased significantly when genomic inbreeding depression effects were included in the model. However, the inclusion of dominance effects did not change the predictive ability for any trait except for TNB. CONCLUSIONS: Our study shows that it is feasible to combine data from different SNP arrays for genomic evaluation, and that all combination methods result in similar accuracies. Regardless of how dominance effects are fitted in the genomic model, there is no impact on genetic evaluation. Models including inbreeding depression effects outperform a model with only additive effects, even if the trait is not strongly affected by dominant genes.


Assuntos
Depressão por Endogamia , Gravidez , Feminino , Suínos/genética , Animais , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Canadá , Genômica/métodos
8.
Genet Sel Evol ; 54(1): 52, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842585

RESUMO

BACKGROUND: Single-step genomic predictions obtained from a breeding value model require calculating the inverse of the genomic relationship matrix [Formula: see text]. The Algorithm for Proven and Young (APY) creates a sparse representation of [Formula: see text] with a low computational cost. APY consists of selecting a group of core animals and expressing the breeding values of the remaining animals as a linear combination of those from the core animals plus an error term. The objectives of this study were to: (1) extend APY to marker effects models; (2) derive equations for marker effect estimates when APY is used for breeding value models, and (3) show the implication of selecting a specific group of core animals in terms of a marker effects model. RESULTS: We derived a family of marker effects models called APY-SNP-BLUP. It differs from the classic marker effects model in that the row space of the genotype matrix is reduced and an error term is fitted for non-core animals. We derived formulas for marker effect estimates that take this error term in account. The prediction error variance (PEV) of the marker effect estimates depends on the PEV for core animals but not directly on the PEV of the non-core animals. We extended the APY-SNP-BLUP to include a residual polygenic effect and accommodate non-genotyped animals. We show that selecting a specific group of core animals is equivalent to select a subspace of the row space of the genotype matrix. As the number of core animals increases, subspaces corresponding to different sets of core animals tend to overlap, showing that random selection of core animals is algebraically justified. CONCLUSIONS: The APY-(ss)GBLUP models can be expressed in terms of marker effect models. When the number of core animals is equal to the rank of the genotype matrix, APY-SNP-BLUP is identical to the classic marker effects model. If the number of core animals is less than the rank of the genotype matrix, genotypes for non-core animals are imputed as a linear combination of the genotypes of the core animals. For estimating SNP effects, only relationships and estimated breeding values for core animals are needed.


Assuntos
Genoma , Modelos Genéticos , Algoritmos , Animais , Genômica , Genótipo , Linhagem , Fenótipo
9.
Genet Sel Evol ; 54(1): 66, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36162979

RESUMO

BACKGROUND: Although single-step GBLUP (ssGBLUP) is an animal model, SNP effects can be backsolved from genomic estimated breeding values (GEBV). Predicted SNP effects allow to compute indirect prediction (IP) per individual as the sum of the SNP effects multiplied by its gene content, which is helpful when the number of genotyped animals is large, for genotyped animals not in the official evaluations, and when interim evaluations are needed. Typically, IP are obtained for new batches of genotyped individuals, all of them young and without phenotypes. Individual (theoretical) accuracies for IP are rarely reported, but they are nevertheless of interest. Our first objective was to present equations to compute individual accuracy of IP, based on prediction error covariance (PEC) of SNP effects, and in turn, are obtained from PEC of GEBV in ssGBLUP. The second objective was to test the algorithm for proven and young (APY) in PEC computations. With large datasets, it is impossible to handle the full PEC matrix, thus the third objective was to examine the minimum number of genotyped animals needed in PEC computations to achieve IP accuracies that are equivalent to GEBV accuracies. RESULTS: Correlations between GEBV and IP for the validation animals using SNP effects from ssGBLUP evaluations were ≥ 0.99. When all available genotyped animals were used for PEC computations, correlations between GEBV and IP accuracy were ≥ 0.99. In addition, IP accuracies were compatible with GEBV accuracies either with direct inversion of the genomic relationship matrix (G) or using the algorithm for proven and young (APY) to obtain the inverse of G. As the number of genotyped animals included in the PEC computations decreased from around 55,000 to 15,000, correlations were still ≥ 0.96, but IP accuracies were biased downwards. CONCLUSIONS: Theoretical accuracy of indirect prediction can be successfully obtained by computing SNP PEC out of GEBV PEC from ssGBLUP equations using direct or APY G inverse. It is possible to reduce the number of genotyped animals in PEC computations, but accuracies may be underestimated. Further research is needed to approximate SNP PEC from ssGBLUP to limit the computational requirements with many genotyped animals.


Assuntos
Genoma , Modelos Genéticos , Animais , Genômica , Genótipo , Linhagem , Fenótipo
10.
Genet Sel Evol ; 54(1): 14, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172716

RESUMO

BACKGROUND: Genetic selection has proven to be a successful strategy for the sustainable control of gastrointestinal parasitism in sheep. However, little is known on the relationship between resistance to parasites and production traits in dairy breeds. In this study, we estimated the heritabilities and genetic correlations for resistance to parasites and milk production traits in the blond-faced Manech breed. The resistance to parasites of 951 rams from the selection scheme was measured through fecal egg counts (FEC) at 30 days post-infection under experimental conditions. Six milk production traits [milk yield (MY), fat yield (FY), protein yield (PY), fat content (FC), protein content (PC) and somatic cell score (LSCS)], were used in this study and were collected on 140,127 dairy ewes in first lactation, as part of the official milk recording. These ewes were related to the 951 rams (65% of the ewes were daughters of the rams). RESULTS: Fecal egg counts at the end of the first and second infections were moderately heritable (0.19 and 0.37, respectively) and highly correlated (0.93). Heritabilities were moderate for milk yields (ranging from 0.24 to 0.29 for MY, FY and PY) and high for FC (0.35) and PC (0.48). MY was negatively correlated with FC and PC (- 0.39 and - 0.45, respectively). FEC at the end of the second infection were positively correlated with MY, FY and PY (0.28, 0.29 and 0.24, respectively with standard errors of ~ 0.10). These slightly unfavorable correlations indicate that the animals with a high production potential are genetically more susceptible to gastrointestinal parasite infections. A low negative correlation (- 0.17) was also found between FEC after the second infection and LSCS, which suggests that there is a small genetic antagonism between resistance to gastrointestinal parasites and resistance to mastitis, which is another important health trait in dairy sheep. CONCLUSIONS: Our results indicate an unfavorable but low genetic relationship between resistance to gastrointestinal parasites and milk production traits in the blond-faced Manech breed. These results will help the breeders' association make decisions about how to include resistance to parasites in the selection objective.


Assuntos
Enteropatias Parasitárias , Doenças dos Ovinos , Animais , Feminino , Enteropatias Parasitárias/genética , Lactação/genética , Masculino , Leite/metabolismo , Ovinos/genética , Doenças dos Ovinos/genética , Doenças dos Ovinos/parasitologia , Carneiro Doméstico
11.
Genet Sel Evol ; 53(1): 89, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837954

RESUMO

BACKGROUND: Understanding whether genomic selection has been effective in livestock and when the results of genomic selection became visible are essential questions which we have addressed in this paper. Three criteria were used to identify practices of breeding programs over time: (1) the point of divergence of estimated genetic trends based on pedigree-based best linear unbiased prediction (BLUP) versus single-step genomic BLUP (ssGBLUP), (2) the point of divergence of realized Mendelian sampling (RMS) trends based on BLUP and ssGBLUP, and (3) the partition of genetic trends into that contributed by genotyped and non-genotyped individuals and by males and females. METHODS: We used data on 282,035 animals from a commercial maternal line of pigs, of which 32,856 were genotyped for 36,612 single nucleotide polymorphisms (SNPs) after quality control. Phenotypic data included 228,427, 101,225, and 11,444 records for birth weight, average daily gain in the nursery, and feed intake, respectively. Breeding values were predicted in a multiple-trait framework using BLUP and ssGBLUP. RESULTS: The points of divergence of the genetic and RMS trends estimated by BLUP and ssGBLUP indicated that genomic selection effectively started in 2019. Partitioning the overall genetic trends into that for genotyped and non-genotyped individuals revealed that the contribution of genotyped animals to the overall genetic trend increased rapidly from ~ 74% in 2016 to 90% in 2019. The contribution of the female pathway to the genetic trend also increased since genomic selection was implemented in this pig population, which reflects the changes in the genotyping strategy in recent years. CONCLUSIONS: Our results show that an assessment of breeding program practices can be done based on the point of divergence of genetic and RMS trends between BLUP and ssGBLUP and based on the partitioning of the genetic trend into contributions from different selection pathways. However, it should be noted that genetic trends can diverge before the onset of genomic selection if superior animals are genotyped retroactively. For the pig population example, the results showed that genomic selection was effective in this population.


Assuntos
Gado , Modelos Genéticos , Animais , Feminino , Genoma , Genótipo , Gado/genética , Masculino , Linhagem , Fenótipo , Suínos/genética
12.
Genet Sel Evol ; 53(1): 4, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407067

RESUMO

BACKGROUND: Resilient animals can remain productive under different environmental conditions. Rearing in increasingly heterogeneous environmental conditions increases the need of selecting resilient animals. Detection of environmental challenges that affect an entire population can provide a unique opportunity to select animals that are more resilient to these events. The objective of this study was two-fold: (1) to present a simple and practical data-driven approach to estimate the probability that, at a given date, an unrecorded environmental challenge occurred; and (2) to evaluate the genetic determinism of resilience to such events. METHODS: Our method consists of inferring the existence of highly variable days (indicator of environmental challenges) via mixture models applied to frequently recorded phenotypic measures and then using the inferred probabilities of the occurrence of an environmental challenge in a reaction norm model to evaluate the genetic determinism of resilience to these events. These probabilities are estimated for each day (or other time frame). We illustrate the method by using an ovine dataset with daily feed intake (DFI) records. RESULTS: Using the proposed method, we estimated the probability of the occurrence of an unrecorded environmental challenge, which proved to be informative and useful for inclusion as a covariate in a reaction norm animal model. We estimated the breeding values for sensitivity of the genetic potential for DFI of animals to environmental challenges. The level and slope of the reaction norm were negatively correlated (- 0.46 ± 0.21). CONCLUSIONS: Our method is promising and appears to be viable to identify unrecorded events of environmental challenges, which is useful when selecting resilient animals and only productive data are available. It can be generalized to a wide variety of phenotypic records from different species and used with large datasets. The negative correlation between level and slope indicates that a hypothetical selection for increased DFI may not be optimal depending on the presence or absence of stress. We observed a reranking of individuals along the environmental gradient and low genetic correlations between extreme environmental conditions. These results confirm the existence of a G [Formula: see text] E interaction and show that the best animals in one environmental condition are not the best in another one.


Assuntos
Adaptação Fisiológica , Cruzamento/métodos , Ingestão de Alimentos , Modelos Genéticos , Característica Quantitativa Herdável , Ovinos/genética , Animais , Meio Ambiente , Polimorfismo Genético
13.
J Anim Breed Genet ; 138(1): 4-13, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32985749

RESUMO

The objective of this study was to determine whether the linear regression (LR) method could be used to validate genomic threshold models. Statistics for the LR method were computed from estimated breeding values (EBVs) using the whole and truncated data sets with variances from the reference and validation populations. The method was tested using simulated and real chicken data sets. The simulated data set included 10 generations of 4,500 birds each; genotypes were available for the last three generations. Each animal was assigned a continuous trait, which was converted to a binary score assuming an incidence of failure of 7%. The real data set included the survival status of 186,596 broilers (mortality rate equal to 7.2%) and genotypes of 18,047 birds. Both data sets were analysed using best linear unbiased predictor (BLUP) or single-step GBLUP (ssGBLUP). The whole data set included all phenotypes available, whereas in the partial data set, phenotypes of the most recent generation were removed. In the simulated data set, the accuracies based on the LR formulas were 0.45 for BLUP and 0.76 for ssGBLUP, whereas the correlations between true breeding values and EBVs (i.e. true accuracies) were 0.37 and 0.65, respectively. The gain in accuracy by adding genomic information was overestimated by 0.09 when using the LR method compared to the true increase in accuracy. However, when the estimated ratio between the additive variance computed based on pedigree only and on pedigree and genomic information was considered, the difference between true and estimated gain was <0.02. Accuracies of BLUP and ssGBLUP with the real data set were 0.41 and 0.47, respectively. This small improvement in accuracy when using ssGBLUP with the real data set was due to population structure and lower heritability. The LR method is a useful tool for estimating improvements in accuracy of EBVs due to the inclusion of genomic information when traditional validation methods as k-fold validation and predictive ability are not applicable.


Assuntos
Galinhas , Genoma , Animais , Genômica , Genótipo , Modelos Lineares , Modelos Genéticos , Linhagem , Fenótipo
14.
Genet Sel Evol ; 52(1): 50, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819272

RESUMO

BACKGROUND: X-chromosomal loci present different inheritance patterns compared to autosomal loci and must be modeled accordingly. Sexual chromosomes are not systematically considered in whole-genome relationship matrices although rules based on genealogical or marker information have been derived. Loci on the X-chromosome could have a significant contribution to the additive genetic variance, in particular for some traits such as those related to reproduction. Thus, accounting for the X-chromosome relationship matrix might be informative to better understand the architecture of complex traits (e.g., by estimating the variance associated to this chromosome) and to improve their genomic prediction. For such applications, previous studies have shown the benefits of combining information from genotyped and ungenotyped individuals. RESULTS: In this paper, we start by presenting rules to compute a genomic relationship matrix (GRM) for the X-chromosome (GX) without making any assumption on dosage compensation, and based on coding of gene content with 0/1 for males and 0/1/2 for females. This coding adjusts naturally to previously derived pedigree-based relationships (S) for the X-chromosome. When needed, we propose to accommodate and estimate dosage compensation and genetic heterogeneity across sexes via multiple trait models. Using a Holstein dairy cattle dataset, including males and females, we then empirically illustrate that realized relationships (GX) matches expectations (S). However, GX presents high deviations from S. GX has also a lower dimensionality compared to the autosomal GRM. In particular, individuals are frequently identical along the entire chromosome. Finally, we confirm that the heritability of gene content for markers on the X-chromosome that are estimated by using S is 1, further demonstrating that S and GX can be combined. For the pseudo-autosomal region, we demonstrate that the expected relationships vary according to position because of the sex-gradient. We end by presenting the rules to construct the 'H matrix' by combining both relationship matrices. CONCLUSIONS: This work shows theoretically and empirically that a pedigree-based relationship matrix built with rules specifically developed for the X-chromosome (S) matches the realized GRM for the X-chromosome. Therefore, applications that combine expected relationships and genotypes for markers on the X-chromosome should use S and GX.


Assuntos
Cruzamento/métodos , Bovinos/genética , Estudo de Associação Genômica Ampla/métodos , Característica Quantitativa Herdável , Cromossomo X/genética , Animais , Feminino , Heterogeneidade Genética , Masculino , Linhagem
15.
Genet Sel Evol ; 52(1): 47, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787772

RESUMO

BACKGROUND: Bias has been reported in genetic or genomic evaluations of several species. Common biases are systematic differences between averages of estimated and true breeding values, and their over- or under-dispersion. In addition, comparing accuracies of pedigree versus genomic predictions is a difficult task. This work proposes to analyse biases and accuracies in the genetic evaluation of milk yield in Manech Tête Rousse dairy sheep, over several years, by testing five models and using the estimators of the linear regression method. We tested models with and without genomic information [best linear unbiased prediction (BLUP) and single-step genomic BLUP (SSGBLUP)] and using three strategies to handle missing pedigree [unknown parent groups (UPG), UPG with QP transformation in the [Formula: see text] matrix (EUPG) and metafounders (MF)]. METHODS: We compared estimated breeding values (EBV) of selected rams at birth with the EBV of the same rams obtained each year from the first daughters with phenotypes up to 2017. We compared within and across models. Finally, we compared EBV at birth of the rams with and without genomic information. RESULTS: Within models, bias and over-dispersion were small (bias: 0.20 to 0.40 genetic standard deviations; slope of the dispersion: 0.95 to 0.99) except for model SSGBLUP-EUPG that presented an important over-dispersion (0.87). The estimates of accuracies confirm that the addition of genomic information increases the accuracy of EBV in young rams. The smallest bias was observed with BLUP-MF and SSGBLUP-MF. When we estimated dispersion by comparing a model with no markers to models with markers, SSGBLUP-MF showed a value close to 1, indicating that there was no problem in dispersion, whereas SSGBLUP-EUPG and SSGBLUP-UPG showed a significant under-dispersion. Another important observation was the heterogeneous behaviour of the estimates over time, which suggests that a single check could be insufficient to make a good analysis of genetic/genomic evaluations. CONCLUSIONS: The addition of genomic information increases the accuracy of EBV of young rams in Manech Tête Rousse. In this population that has missing pedigrees, the use of UPG and EUPG in SSGBLUP produced bias, whereas MF yielded unbiased estimates, and we recommend its use. We also recommend assessing biases and accuracies using multiple truncation points, since these statistics are subject to random variation across years.


Assuntos
Cruzamento/métodos , Estudo de Associação Genômica Ampla/métodos , Ovinos/genética , Animais , Viés , Cruzamento/normas , Feminino , Estudo de Associação Genômica Ampla/normas , Masculino , Leite/normas , Linhagem , Polimorfismo Genético , Locos de Características Quantitativas , Ovinos/fisiologia
16.
PLoS Genet ; 13(1): e1006498, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28121987

RESUMO

Assessing the impact of the social environment on health and disease is challenging. As social effects are in part determined by the genetic makeup of social partners, they can be studied from associations between genotypes of one individual and phenotype of another (social genetic effects, SGE, also called indirect genetic effects). For the first time we quantified the contribution of SGE to more than 100 organismal phenotypes and genome-wide gene expression measured in laboratory mice. We find that genetic variation in cage mates (i.e. SGE) contributes to variation in organismal and molecular measures related to anxiety, wound healing, immune function, and body weight. Social genetic effects explained up to 29% of phenotypic variance, and for several traits their contribution exceeded that of direct genetic effects (effects of an individual's genotypes on its own phenotype). Importantly, we show that ignoring SGE can severely bias estimates of direct genetic effects (heritability). Thus SGE may be an important source of "missing heritability" in studies of complex traits in human populations. In summary, our study uncovers an important contribution of the social environment to phenotypic variation, sets the basis for using SGE to dissect social effects, and identifies an opportunity to improve studies of direct genetic effects.


Assuntos
Interação Gene-Ambiente , Predisposição Genética para Doença/genética , Variação Genética , Meio Social , Animais , Peso Corporal/genética , Genótipo , Imunidade/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Característica Quantitativa Herdável , Cicatrização/genética
17.
J Anim Breed Genet ; 137(4): 356-364, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32080913

RESUMO

Model-based accuracy, defined as the theoretical correlation between true and estimated breeding value, can be obtained for each individual as a function of its prediction error variance (PEV) and inbreeding coefficient F, in BLUP, GBLUP and SSGBLUP genetic evaluations. However, for computational convenience, inbreeding is often ignored in two places. First, in the computation of reliability = 1-PEV/(1 + F). Second, in the set-up, using Henderson's rules, of the inverse of the pedigree-based relationship matrix A. Both approximations have an effect in the computation of model-based accuracy and result in wrong values. In this work, first we present a reminder of the theory and extend it to SSGBLUP. Second, we quantify the error of ignoring inbreeding with real data in three scenarios: BLUP evaluation and SSGBLUP in Uruguayan dairy cattle, and BLUP evaluations in a line of rabbit closed for >40 generations with steady increase of inbreeding up to an average of 0.30. We show that ignoring inbreeding in the set-up of the A-inverse is equivalent to assume that non-inbred animals are actually inbred. This results in an increase of apparent PEV that is negligible for dairy cattle but considerable for rabbit. Ignoring inbreeding in reliability = 1-PEV/(1 + F) leads to underestimation of reliability for BLUP evaluations, and this underestimation is very large for rabbit. For SSGBLUP in dairy cattle, it leads to both underestimation and overestimation of reliability, both for genotyped and non-genotyped animals. We strongly recommend to include inbreeding both in the set-up of A-inverse and in the computation of reliability from PEVs.


Assuntos
Endogamia , Modelos Genéticos , Animais , Bovinos , Feminino , Genômica , Genótipo , Masculino , Linhagem , Fenótipo , Coelhos , Reprodutibilidade dos Testes
18.
Genet Sel Evol ; 51(1): 69, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757207

RESUMO

After publication of original article [1], the authors noticed that there was an error.

19.
Genet Sel Evol ; 51(1): 28, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221101

RESUMO

BACKGROUND: Single-step genomic best linear unbiased prediction (SSGBLUP) is a comprehensive method for genomic prediction. Point estimates of marker effects from SSGBLUP are often used for genome-wide association studies (GWAS) without a formal framework of hypothesis testing. Our objective was to implement p-values for single-marker GWAS studies within the single-step GWAS (SSGWAS) framework by deriving computational algorithms and procedures, and by applying these to a large beef cattle population. METHODS: P-values were obtained based on the prediction error (co)variances for single nucleotide polymorphisms (SNPs), which were obtained from the prediction error (co)variances of genomic predictions based on the inverse of the coefficient matrix and formulas to estimate SNP effects. RESULTS: Computation of p-values took a negligible time for a dataset with almost 2 million animals in the pedigree and 1424 genotyped sires, and no inflation of statistics was observed. The SNPs that passed the Bonferroni threshold of 10-5.9 were the same as those that explained the highest proportion of additive genetic variance, but even at the same significance levels and effects, some of them explained less genetic variance due to lower allele frequency. CONCLUSIONS: The use of a p-value for SSGWAS is a very general and efficient strategy to identify quantitative trait loci (QTL). It can be used for complex datasets such as those used in animal breeding, where only a proportion of the pedigreed animals are genotyped.


Assuntos
Peso ao Nascer/genética , Bovinos/genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla/veterinária , Algoritmos , Animais , Conjuntos de Dados como Assunto , Feminino , Masculino , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
20.
Genet Sel Evol ; 50(1): 53, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400768

RESUMO

BACKGROUND: Cross-validation tools are used increasingly to validate and compare genetic evaluation methods but analytical properties of cross-validation methods are rarely described. There is also a lack of cross-validation tools for complex problems such as prediction of indirect effects (e.g. maternal effects) or for breeding schemes with small progeny group sizes. RESULTS: We derive the expected value of several quadratic forms by comparing genetic evaluations including "partial" and "whole" data. We propose statistics that compare genetic evaluations including "partial" and "whole" data based on differences in means, covariance, and correlation, and term the use of these statistics "method LR" (from linear regression). Contrary to common belief, the regression of true on estimated breeding values is (on expectation) lower than 1 for small or related validation sets, due to family structures. For validation sets that are sufficiently large, we show that these statistics yield estimators of bias, slope or dispersion, and population accuracy for estimated breeding values. Similar results hold for prediction of future phenotypes although we show that estimates of bias, slope or dispersion using prediction of future phenotypes are sensitive to incorrect heritabilities or precorrection for fixed effects. We present an example for a set of 2111 Brahman beef cattle for which, in repeated partitioning of the data into training and validation sets, there is very good agreement of statistics of method LR with prediction of future phenotypes. CONCLUSIONS: Analytical properties of cross-validation measures are presented. We present a new method named LR for cross-validation that is automatic, easy to use, and which yields the quantities of interest. The method compares predictions based on partial and whole data, which results in estimates of accuracy and biases. Prediction of observed records may yield biased results due to precorrection or use of incorrect heritabilities.


Assuntos
Cruzamento/métodos , Bovinos/genética , Modelos Genéticos , Animais , Feminino , Genótipo , Modelos Lineares , Masculino , Fenótipo , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa