Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(22)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36848668

RESUMO

Flake thickness is one of the defining properties of graphene-related 2D materials (GR2Ms), and therefore requires reliable, accurate, and reproducible measurements with well-understood uncertainties. This is needed regardless of the production method or manufacturer because it is important for all GR2M products to be globally comparable. An international interlaboratory comparison on thickness measurements of graphene oxide flakes using atomic force microscopy has been completed in technical working area 41 of versailles project on advanced materials and standards. Twelve laboratories participated in the comparison project, led by NIM, China, to improve the equivalence of thickness measurement for two-dimensional flakes. The measurement methods, uncertainty evaluation and a comparison of the results and analysis are reported in this manuscript. The data and results of this project will be directly used to support the development of an ISO standard.

2.
Analyst ; 147(21): 4642-4656, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-35997002

RESUMO

Stimulated Raman scattering (SRS) microscopy provides rapid label-free 3D chemical imaging with wide-ranging applications including histology, pharmacokinetic studies, and materials characterisation. SRS microscopy has seen a steady increase in utilisation since the early 2000s and has become more accessible due to the increase in availability of facilities, and the development of user-friendly instrumentation. Although some complete SRS systems are now commercially available, many instruments are home-built with highly varied laser sources, optics, and detection mechanisms. Signal intensity is also dependent on the effective spatiotemporal overlap of two (or more) laser beams, thus any drift in alignment can result in variable performance. Currently there is a lack of standard procedures or reference materials for SRS, which has important implications on reproducibility and consistency. These concerns are particularly relevant to the comparison of data from the same instrument at different times and instrument settings as well as between different instruments and laboratories. This tutorial-style review presents the most important practical considerations for sample preparation, instrument set-up, image acquisition and data analysis to obtain reproducible SRS measurements.


Assuntos
Microscopia Óptica não Linear , Análise Espectral Raman , Reprodutibilidade dos Testes , Microscopia Óptica não Linear/métodos , Análise Espectral Raman/métodos , Microscopia , Lasers
3.
J Chem Phys ; 155(17): 174703, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34742208

RESUMO

Graphene is an ideal material for biosensors due to the large surface area for multiple bonding sites, the high electrical conductivity allowing for high sensitivity, and the high tensile strength providing durability in fabricated sensor devices. For graphene to be successful as a biosensing platform, selectivity must be achieved through functionalization with specific chemical groups. However, the device performance and sensor sensitivity must still be maintained after functionalization, which can be challenging. We compare phenyl amine and 1,5-diaminonaphthalene functionalization methods for chemical vapor deposition grown graphene, both used to obtain graphene modified with amine groups-which is required for surface attachment of highly selective antibody bio-receptors. Through atomic force microscopy (AFM), Raman spectroscopy, and time-of-flight secondary ion mass spectrometry imaging of co-located areas, the chemistry, thickness, and coverage of the functional groups bound to the graphene surface have been comprehensively analyzed. We demonstrate the modification of functionalized graphene using AFM, which unexpectedly suggests the removal of covalently bonded functional groups, resulting in a "recovered" graphene structure with reduced disorder, confirmed with Raman spectroscopy. This removal explains the decrease in the ID/IG ratio observed in Raman spectra from other studies on functionalized graphene after mechanical strain or a chemical reaction and reveals the possibility of reverting to the non-functionalized graphene structure. Through this study, preferred functionalization processes are recommended to maintain the performance properties of graphene as a biosensor.


Assuntos
Técnicas Biossensoriais , Grafite/química , Compostos Orgânicos/química , Aminas/química , Condutividade Elétrica , Microscopia de Força Atômica
4.
J Pharm Sci ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777176

RESUMO

The formulation of paediatric medicines faces significant challenges to meet the requirements for safe and accurate administration, while maintaining a suitable taste. Multiparticulate formulations have a strong potential to address these challenges because they combine dose flexibility with ease of administration. Understanding the stability of multiparticulate formulations over storage as a function of time and environmental parameters, such as humidity and temperature, is important to manage their commercialisation and use. In this work, we have expanded the toolkit of available techniques for studying multiparticulates beyond those such as scanning electron microscopy (SEM) and confocal laser scanning microscopy. We include advanced methods of environmentally-controlled SEM to monitor temperature- and humidity-induced changes in-situ, and a variety of Raman spectroscopies including stimulated Raman scattering microscopy to identify and localise the different ingredients at the surface and inside the multiparticulates. These techniques allowed unprecedented monitoring of specific changes to the particulate structure and distribution of individual ingredients due to product aging. These methods should be considered as valuable novel tools for in-depth characterisation of multiparticulate formulations to further understand chemical changes occurring during their development, manufacturing and long-term storage. We envisage these techniques to be useful in furthering the development of future medicine formulations.

5.
Nat Commun ; 15(1): 2015, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443350

RESUMO

It is well known that molecules confined very close to a surface arrange into molecular layers. Because solid-liquid interfaces are ubiquitous in the chemical, biological and physical sciences, it is crucial to develop methods to easily access molecular layers and exploit their distinct properties by producing molecular layered crystals. Here we report a method based on crystallization in ultra-thin puddles enabled by gas blowing, which allows to produce molecular layered crystals with thickness down to the monolayer onto a surface, making them directly accessible for characterization and further processing. By selecting four molecules with different types of polymorphs, we observed exclusive crystallization of polymorphs with Van der Waals interlayer interactions, which have not been observed with traditional confinement methods. In conclusion, the gas blowing approach unveils the opportunity to perform materials chemistry under confinement onto a surface, enabling the formation of distinct crystals with selected polymorphism.

6.
ACS Appl Mater Interfaces ; 12(11): 13481-13493, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32084318

RESUMO

Graphene is a highly desirable material for a variety of applications; in the case of nanocomposites, it can be functionalized and added as a nanofiller to alter the ultimate product properties, such as tensile strength. However, often the material properties of the functionalized graphene and the location of any chemical species, attached via different functionalization processes, are not known. Thus, it is not necessarily understood why improvements in product performance are achieved, which hinders the rate of product development. Here, a commercially available powder containing few-layer graphene (FLG) flakes is characterized before and after plasma or chemical functionalization with either nitrogen or oxygen species. A range of measurement techniques, including tip-enhanced Raman spectroscopy (TERS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and NanoSIMS, were used to examine the physical and chemical changes in the FLG material at both the micro- and nanoscale. This is the first reported TERS imaging of commercially available FLG flakes of submicron lateral size, revealing the location of the defects (edge versus basal plane) and variations in the level of functionalization. Graphene-polymer composites were then produced, and the dispersion of the graphitic material in the matrix was visualized using ToF-SIMS. Finally, mechanical testing of the composites demonstrated that the final product performance could be enhanced but differed depending on the properties of the original graphitic material.

7.
RSC Adv ; 8(65): 37540-37549, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35557804

RESUMO

Graphene is a desirable material for next generation technology. However, producing high yields of single-layer flakes with industrially applicable methods is currently limited. We introduce a combined process for the reduction of graphene oxide (GO) via vitamin C (ascorbic acid) and thermal annealing at temperatures of <150 °C for times of <10 minutes, resulting in electrically conducting thin films with sheet resistances reducing by 8 orders of magnitude to as low as ∼1.3 kΩ â–¡-1, suitable for microelectronics, display technology and optoelectronic applications. The in-depth physicochemical characterisation of the products at different stages of GO preparation and reduction allows for further understanding of the process and demonstrates the suitability for industrial production methodologies due to an environmentally-friendly reducing agent, solution processability and no requirement for high temperatures. The presence of the vitamin C lowers the temperature required to thermally reduce the GO into an electrically conducting thin film, making the technique suitable for thermally sensitive substrates, such as low melting point polymers. Simultaneous spray coating and reduction of GO allows for large area deposition of conductive coatings without sacrificing solution processability, often lost through particle agglomeration, making it compatible with industrial processes, and applicable to, for example, the production of sensors, energy devices and flexible conductive electrodes for touchscreens.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa