Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29427428

RESUMO

Fusarium graminearum is a major plant pathogen that causes devastating diseases of cereals and produces type B trichothecene (TCTB) mycotoxins in infected grains. A comprehensive understanding of the molecular and biochemical mechanisms underlying the regulation of TCTB biosynthesis is required for improving strategies to control the TCTB contamination of crops and ensuring that these strategies do not favor the production of other toxic metabolites by F. graminearum Elucidation of the association of TCTB biosynthesis with other central and specialized processes was the focus of this study. Combined 1H nuclear magnetic resonance (1H NMR) and liquid chromatography-quadrupole time of flight-mass spectrometry (LC-QTOF-MS) analyses were used to compare the exo- and endometabolomes of F. graminearum grown under toxin-inducing and -repressing caffeic acid conditions. Ninety-five metabolites were putatively or unambiguously identified, including 26 primary and 69 specialized metabolites. Our data demonstrated that the inhibition of TCTB production induced by caffeic acid exposure was associated with significant changes in the secondary and primary metabolism of F. graminearum, although the fungal growth was not affected. The main metabolic changes were an increase in the accumulation of several polyketides, including toxic ones, alterations in the tricarboxylic organic acid cycle, and modifications in the metabolism of several amino acids and sugars. While these findings provide insights into the mechanisms that govern the inhibition of TCTB production by caffeic acid, they also demonstrate the interdependence between the biosynthetic pathway of TCTB and several primary and specialized metabolic pathways. These results provide further evidence of the multifaceted role of TCTB in the life cycle of F. graminearumIMPORTANCEFusarium graminearum is a major plant pathogen that causes devastating diseases of cereal crops and produces type B trichothecene (TCTB) mycotoxins in infected grains. The best way to restrict consumer exposure to TCTB is to limit their production before harvest, which requires increasing the knowledge on the mechanisms that regulate their biosynthesis. Using a metabolomics approach, we investigated the interconnection between the TCTB production pathway and several fungal metabolic pathways. We demonstrated that alteration in the TCTB biosynthetic pathway can have a significant impact on other metabolic pathways, including the biosynthesis of toxic polyketides, and vice versa. These findings open new avenues for identifying fungal targets for the design of molecules with antimycotoxin properties and therefore improving sustainable strategies to fight against diseases caused by F. graminearum Our data further demonstrate that analyses should consider all fungal toxic metabolites rather than the targeted family of mycotoxins when assessing the efficacy of control strategies.


Assuntos
Ácidos Cafeicos/metabolismo , Fusarium/metabolismo , Micotoxinas/metabolismo , Vias Biossintéticas , Ácidos Cafeicos/administração & dosagem , Metabolômica , Micotoxinas/biossíntese
2.
J Integr Plant Biol ; 56(8): 797-809, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24667002

RESUMO

The impact of osmotic stress on growth, physiology, and metabolism of winter oilseed rape (Brassica napus L.) was investigated by detailed analysis of biomass traits, hormone metabolites and osmolytes in two genetically unrelated drought-tolerant genotypes and two unrelated drought-sensitive genotypes. Seedlings were grown in vitro under controlled conditions and osmotic stress was simulated by applying a gradual treatment with polyethylene glycol (PEG 6000), followed by hypo-osmotic treatment of variants used for metabolite determination. The results provide a basis for the identification of reliable selection criteria for drought resistance in oilseed rape. The in vitro cultivation system established during this study enabled effective discrimination of early osmotic stress responses between drought-resistant and -susceptible oilseed rape genotypes that also show large differences in relative seed yield under drought conditions in the field. Clear physiological and metabolic differences were observed between the drought-resistant and drought-sensitive genotypes, suggesting that osmotic adjustment is a key component of drought response in oilseed rape. Unexpectedly, however, the drought-resistant genotypes did not show typical hormonal adjustment and osmolyte accumulation, suggesting that they possess alternative physiological mechanisms enabling avoidance of stress symptoms.


Assuntos
Brassica napus/fisiologia , Secas , Pressão Osmótica , Água/fisiologia , Metabolismo dos Carboidratos , Ornitina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Prolina/metabolismo , Plântula/fisiologia , Álcoois Açúcares/metabolismo , Temperatura
3.
Front Plant Sci ; 10: 1342, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708951

RESUMO

Seed germination is a complex trait determined by the interaction of hormonal, metabolic, genetic, and environmental components. Variability of this trait in crops has a big impact on seedling establishment and yield in the field. Classical studies of this trait in crops have focused mainly on the analyses of one level of regulation in the cascade of events leading to seed germination. We have carried out an integrative and extensive approach to deepen our understanding of seed germination in Brassica napus by generating transcriptomic, metabolic, and hormonal data at different stages upon seed imbibition. Deep phenotyping of different seed germination-associated traits in six winter-type B. napus accessions has revealed that seed germination kinetics, in particular seed germination speed, are major contributors to the variability of this trait. Metabolic profiling of these accessions has allowed us to describe a common pattern of metabolic change and to identify the levels of malate and aspartate metabolites as putative metabolic markers to estimate germination performance. Additionally, analysis of seed content of different hormones suggests that hormonal balance between ABA, GA, and IAA at crucial time points during this process might underlie seed germination differences in these accessions. In this study, we have also defined the major transcriptome changes accompanying the germination process in B. napus. Furthermore, we have observed that earlier activation of key germination regulatory genes seems to generate the differences in germination speed observed between accessions in B. napus. Finally, we have found that protein-protein interactions between some of these key regulator are conserved in B. napus, suggesting a shared regulatory network with other plant species. Altogether, our results provide a comprehensive and detailed picture of seed germination dynamics in oilseed rape. This new framework will be extremely valuable not only to evaluate germination performance of B. napus accessions but also to identify key targets for crop improvement in this important process.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa