Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Negl Trop Dis ; 16(6): e0010222, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35767572

RESUMO

BACKGROUND: Tsetse flies (Glossina) transmit Trypanosoma brucei gambiense which causes Gambian human African trypanosomiasis (gHAT) in Central and West Africa. Several countries use Tiny Targets, comprising insecticide-treated panels of material which attract and kill tsetse, as part of their national programmes to eliminate gHAT. We studied how the scale and arrangement of target deployment affected the efficacy of control. METHODOLOGY AND PRINCIPAL FINDINGS: Between 2012 and 2016, Tiny Targets were deployed biannually along the larger rivers of Arua, Maracha, Koboko and Yumbe districts in North West Uganda with the aim of reducing the abundance of tsetse to interrupt transmission. The extent of these deployments increased from ~250 km2 in 2012 to ~1600 km2 in 2015. The impact of Tiny Targets on tsetse populations was assessed by analysing catches of tsetse from a network of monitoring traps; sub-samples of captured tsetse were dissected to estimate their age and infection status. In addition, the condition of 780 targets (~195/district) was assessed for up to six months after deployment. In each district, mean daily catches of tsetse (G. fuscipes fuscipes) from monitoring traps declined significantly by >80% following the deployment of targets. The reduction was apparent for several kilometres on adjacent lengths of the same river but not in other rivers a kilometre or so away. Expansion of the operational area did not always produce higher levels of suppression or detectable change in the age structure or infection rates of the population, perhaps due to the failure to treat the smaller streams and/or invasion from adjacent untreated areas. The median effective life of a Tiny Target was 61 (41.8-80.2, 95% CI) days. CONCLUSIONS: Scaling-up of tsetse control reduced the population of tsetse by >80% across the intervention area. Even better control might be achievable by tackling invasion of flies from infested areas within and outside the current intervention area. This might involve deploying more targets, especially along smaller rivers, and extending the effective life of Tiny Targets.


Assuntos
Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Gâmbia , Humanos , Controle de Insetos/métodos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Uganda/epidemiologia
2.
PLoS Negl Trop Dis ; 14(10): e0008270, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33064783

RESUMO

Over the past 20 years there has been a >95% reduction in the number of Gambian Human African trypanosomiasis (g-HAT) cases reported globally, largely as a result of large-scale active screening and treatment programmes. There are however still foci where the disease persists, particularly in parts of the Democratic Republic of the Congo (DRC). Additional control efforts such as tsetse control using Tiny Targets may therefore be required to achieve g-HAT elimination goals. The purpose of this study was to evaluate the impact of Tiny Targets within DRC. In 2015-2017, pre- and post-intervention tsetse abundance data were collected from 1,234 locations across three neighbouring Health Zones (Yasa Bonga, Mosango, Masi Manimba). Remotely sensed dry season data were combined with pre-intervention tsetse presence/absence data from 332 locations within a species distribution modelling framework to produce a habitat suitability map. The impact of Tiny Targets on the tsetse population was then evaluated by fitting a generalised linear mixed model to the relative fly abundance data collected from 889 post-intervention monitoring sites within Yasa Bonga, with habitat suitability, proximity to the intervention and intervention duration as covariates. Immediately following the introduction of the intervention, we observe a dramatic reduction in fly catches by > 85% (pre-intervention: 0.78 flies/trap/day, 95% CI 0.676-0.900; 3 month post-intervention: 0.11 flies/trap/day, 95% CI 0.070-0.153) which is sustained throughout the study period. Declines in catches were negatively associated with proximity to Tiny Targets, and while habitat suitability is positively associated with abundance its influence is reduced in the presence of the intervention. This study adds to the body of evidence demonstrating the impact of Tiny Targets on tsetse across a range of ecological settings, and further characterises the factors which modify its impact. The habitat suitability maps have the potential to guide the expansion of tsetse control activities in this area.


Assuntos
Controle de Insetos/métodos , Insetos Vetores , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé , Animais , República Democrática do Congo , Ecossistema , Controle de Insetos/instrumentação , Inseticidas , Nitrilas , Piretrinas
3.
PLoS Negl Trop Dis ; 14(4): e0007737, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32255793

RESUMO

BACKGROUND: Large-scale control of sleeping sickness has led to a decline in the number of cases of Gambian human African trypanosomiasis (g-HAT) to <2000/year. However, achieving complete and lasting interruption of transmission may be difficult because animals may act as reservoir hosts for T. b. gambiense. Our study aims to update our understanding of T. b. gambiense in local vectors and domestic animals of N.W. Uganda. METHODS: We collected blood from 2896 cattle and 400 pigs and In addition, 6664 tsetse underwent microscopical examination for the presence of trypanosomes. Trypanosoma species were identified in tsetse from a subsample of 2184 using PCR. Primers specific for T. brucei s.l. and for T. brucei sub-species were used to screen cattle, pig and tsetse samples. RESULTS: In total, 39/2,088 (1.9%; 95% CI = 1.9-2.5) cattle, 25/400 (6.3%; 95% CI = 4.1-9.1) pigs and 40/2,184 (1.8%; 95% CI = 1.3-2.5) tsetse, were positive for T. brucei s.l.. Of these samples 24 cattle (61.5%), 15 pig (60%) and 25 tsetse (62.5%) samples had sufficient DNA to be screened using the T. brucei sub-species PCR. Further analysis found no cattle or pigs positive for T. b. gambiense, however, 17/40 of the tsetse samples produced a band suggestive of T. b. gambiense. When three of these 17 PCR products were sequenced the sequences were markedly different to T. b. gambiense, indicating that these flies were not infected with T. b. gambiense. CONCLUSION: The lack of T. b. gambiense positives in cattle, pigs and tsetse accords with the low prevalence of g-HAT in the human population. We found no evidence that livestock are acting as reservoir hosts. However, this study highlights the limitations of current methods of detecting and identifying T. b. gambiense which relies on a single copy-gene to discriminate between the different sub-species of T. brucei s.l.


Assuntos
Animais Domésticos/parasitologia , Reservatórios de Doenças/parasitologia , Topografia Médica , Trypanosoma brucei gambiense/isolamento & purificação , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária , Moscas Tsé-Tsé/parasitologia , Animais , Sangue/parasitologia , Bovinos , Humanos , Microscopia , Reação em Cadeia da Polimerase , Prevalência , Suínos , Trypanosoma brucei gambiense/genética , Uganda/epidemiologia
4.
PLoS Negl Trop Dis ; 11(7): e0005792, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28750007

RESUMO

BACKGROUND: Gambian sleeping sickness or HAT (human African trypanosomiasis) is a neglected tropical disease caused by Trypanosoma brucei gambiense transmitted by riverine species of tsetse. A global programme aims to eliminate the disease as a public health problem by 2020 and stop transmission by 2030. In the South of Chad, the Mandoul area is a persistent focus of Gambian sleeping sickness where around 100 HAT cases were still diagnosed and treated annually until 2013. Pre-2014, control of HAT relied solely on case detection and treatment, which lead to a gradual decrease in the number of cases of HAT due to annual screening of the population. METHODS: Because of the persistence of transmission and detection of new cases, we assessed whether the addition of vector control to case detection and treatment could further reduce transmission and consequently, reduce annual incidence of HAT in Mandoul. In particular, we investigated the impact of deploying 'tiny targets' which attract and kill tsetse. Before tsetse control commenced, a census of the human population was conducted and their settlements mapped. A pre-intervention survey of tsetse distribution and abundance was implemented in November 2013 and 2600 targets were deployed in the riverine habitats of tsetse in early 2014, 2015 and 2016. Impact on tsetse and on the incidence of sleeping sickness was assessed through nine tsetse monitoring surveys and four medical surveys of the human population in 2014 and 2015. Mathematical modelling was used to assess the relative impact of tsetse control on incidence compared to active and passive screening. FINDINGS: The census indicated that a population of 38674 inhabitants lived in the vicinity of the Mandoul focus. Within this focus in November 2013, the vector is Glossina fuscipes fuscipes and the mean catch of tsetse from traps was 0.7 flies/trap/day (range, 0-26). The catch of tsetse from 44 sentinel biconical traps declined after target deployment with only five tsetse being caught in nine surveys giving a mean catch of 0.005 tsetse/trap/day. Modelling indicates that 70.4% (95% CI: 51-95%) of the reduction in reported cases between 2013 and 2015 can be attributed to vector control with the rest due to medical intervention. Similarly tiny targets are estimated to have reduced new infections dramatically with 62.8% (95% CI: 59-66%) of the reduction due to tsetse control, and 8.5% (95% 8-9%) to enhanced passive detection. Model predictions anticipate that elimination as a public health problem could be achieved by 2018 in this focus if vector control and screening continue at the present level and, furthermore, there may have been virtually no transmission since 2015. CONCLUSION: This work shows that tiny targets reduced the numbers of tsetse in this focus in Chad, which may have interrupted transmission and the combination of tsetse control to medical detection and treatment has played a major role in reducing in HAT incidence in 2014 and 2015.


Assuntos
Controle de Insetos/métodos , Nitrilas/farmacologia , Piretrinas/farmacologia , Tripanossomíase Africana/prevenção & controle , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/parasitologia , Animais , Censos , Chade/epidemiologia , Feminino , Humanos , Incidência , Insetos Vetores/parasitologia , Masculino , Programas de Rastreamento , Modelos Teóricos , Trypanosoma brucei gambiense/isolamento & purificação
5.
PLoS Negl Trop Dis ; 9(8): e0003727, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26267667

RESUMO

BACKGROUND: Control of gambiense sleeping sickness, a neglected tropical disease targeted for elimination by 2020, relies mainly on mass screening of populations at risk and treatment of cases. This strategy is however challenged by the existence of undetected reservoirs of parasites that contribute to the maintenance of transmission. In this study, performed in the Boffa disease focus of Guinea, we evaluated the value of adding vector control to medical surveys and measured its impact on disease burden. METHODS: The focus was divided into two parts (screen and treat in the western part; screen and treat plus vector control in the eastern part) separated by the Rio Pongo river. Population census and baseline entomological data were collected from the entire focus at the beginning of the study and insecticide impregnated targets were deployed on the eastern bank only. Medical surveys were performed in both areas in 2012 and 2013. FINDINGS: In the vector control area, there was an 80% decrease in tsetse density, resulting in a significant decrease of human tsetse contacts, and a decrease of disease prevalence (from 0.3% to 0.1%; p=0.01), and an almost nil incidence of new infections (<0.1%). In contrast, incidence was 10 times higher in the area without vector control (>1%, p<0.0001) with a disease prevalence increasing slightly (from 0.5 to 0.7%, p=0.34). INTERPRETATION: Combining medical and vector control was decisive in reducing T. b. gambiense transmission and in speeding up progress towards elimination. Similar strategies could be applied in other foci.


Assuntos
Insetos Vetores/fisiologia , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé/fisiologia , Animais , Guiné/epidemiologia , Humanos , Controle de Insetos , Insetos Vetores/parasitologia , Trypanosoma brucei gambiense/fisiologia , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/parasitologia
6.
PLoS Negl Trop Dis ; 6(5): e1661, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666511

RESUMO

BACKGROUND: Most cases of human African trypanosomiasis (HAT) start with a bite from one of the subspecies of Glossina fuscipes. Tsetse use a range of olfactory and visual stimuli to locate their hosts and this response can be exploited to lure tsetse to insecticide-treated targets thereby reducing transmission. To provide a rational basis for cost-effective designs of target, we undertook studies to identify the optimal target colour. METHODOLOGY/PRINCIPAL FINDINGS: On the Chamaunga islands of Lake Victoria , Kenya, studies were made of the numbers of G. fuscipes fuscipes attracted to targets consisting of a panel (25 cm square) of various coloured fabrics flanked by a panel (also 25 cm square) of fine black netting. Both panels were covered with an electrocuting grid to catch tsetse as they contacted the target. The reflectances of the 37 different-coloured cloth panels utilised in the study were measured spectrophotometrically. Catch was positively correlated with percentage reflectance at the blue (460 nm) wavelength and negatively correlated with reflectance at UV (360 nm) and green (520 nm) wavelengths. The best target was subjectively blue, with percentage reflectances of 3%, 29%, and 20% at 360 nm, 460 nm and 520 nm respectively. The worst target was also, subjectively, blue, but with high reflectances at UV (35% reflectance at 360 nm) wavelengths as well as blue (36% reflectance at 460 nm); the best low UV-reflecting blue caught 3× more tsetse than the high UV-reflecting blue. CONCLUSIONS/SIGNIFICANCE: Insecticide-treated targets to control G. f. fuscipes should be blue with low reflectance in both the UV and green bands of the spectrum. Targets that are subjectively blue will perform poorly if they also reflect UV strongly. The selection of fabrics for targets should be guided by spectral analysis of the cloth across both the spectrum visible to humans and the UV region.


Assuntos
Comportamento Animal , Controle de Insetos/métodos , Moscas Tsé-Tsé/fisiologia , Animais , Cor , Feminino , Controle de Insetos/economia , Quênia , Masculino , Visão Ocular/fisiologia
7.
PLoS Negl Trop Dis ; 3(7): e474, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19582138

RESUMO

Tsetse flies, which transmit sleeping sickness to humans and nagana to cattle, are commonly controlled by stationary artificial baits consisting of traps or insecticide-treated screens known as targets. In Kenya the use of electrocuting sampling devices showed that the numbers of Glossina fuscipes fuscipes (Newstead) visiting a biconical trap were nearly double those visiting a black target of 100 cm x 100 cm. However, only 40% of the males and 21% of the females entered the trap, whereas 71% and 34%, respectively, alighted on the target. The greater number visiting the trap appeared to be due to its being largely blue, rather than being three-dimensional or raised above the ground. Through a series of variations of target design we show that a blue-and-black panel of cloth (0.06 m(2)) flanked by a panel (0.06 m(2)) of fine black netting, placed at ground level, would be about ten times more cost-effective than traps or large targets in control campaigns. This finding has important implications for controlling all subspecies of G. fuscipes, which are currently responsible for more than 90% of sleeping sickness cases.


Assuntos
Controle de Insetos/economia , Controle de Insetos/métodos , Moscas Tsé-Tsé , Animais , Bovinos , Cor , Análise Custo-Benefício , Feminino , Humanos , Quênia , Masculino , Equipamentos de Proteção
8.
PLoS Negl Trop Dis ; 3(5): e435, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19434232

RESUMO

We are attempting to develop cost-effective control methods for the important vector of sleeping sickness, Glossina fuscipes spp. Responses of the tsetse flies Glossina fuscipes fuscipes (in Kenya) and G. f. quanzensis (in Democratic Republic of Congo) to natural host odours are reported. Arrangements of electric nets were used to assess the effect of cattle-, human- and pig-odour on (1) the numbers of tsetse attracted to the odour source and (2) the proportion of flies that landed on a black target (1x1 m). In addition responses to monitor lizard (Varanus niloticus) were assessed in Kenya. The effects of all four odours on the proportion of tsetse that entered a biconical trap were also determined. Sources of natural host odour were produced by placing live hosts in a tent or metal hut (volumes approximately 16 m(3)) from which the air was exhausted at approximately 2000 L/min. Odours from cattle, pigs and humans had no significant effect on attraction of G. f. fuscipes but lizard odour doubled the catch (P<0.05). Similarly, mammalian odours had no significant effect on landing or trap entry whereas lizard odour increased these responses significantly: landing responses increased significantly by 22% for males and 10% for females; the increase in trap efficiency was relatively slight (5-10%) and not always significant. For G. f. quanzensis, only pig odour had a consistent effect, doubling the catch of females attracted to the source and increasing the landing response for females by approximately 15%. Dispensing CO(2) at doses equivalent to natural hosts suggested that the response of G. f. fuscipes to lizard odour was not due to CO(2). For G. f. quanzensis, pig odour and CO(2) attracted similar numbers of tsetse, but CO(2) had no material effect on the landing response. The results suggest that identifying kairomones present in lizard odour for G. f. fuscipes and pig odour for G. f. quanzensis may improve the performance of targets for controlling these species.


Assuntos
Controle de Insetos/métodos , Odorantes , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé/parasitologia , Animais , Bovinos , Feminino , Humanos , Insetos Vetores/parasitologia , Masculino , Suínos , Tripanossomíase Africana/parasitologia
10.
Genomics ; 88(6): 831-840, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16887324

RESUMO

An expressed sequence tag library has been generated from a sand fly vector of visceral leishmaniasis, Lutzomyia longipalpis. A normalized cDNA library was constructed from whole adults and 16,608 clones were sequenced from both ends and assembled into 10,203 contigs and singlets. Of these 58% showed significant similarity to known genes from other organisms, <4% were identical to described sand fly genes, and 42% had no match to any database sequence. Our analyses revealed putative proteins involved in the barrier function of the gut (peritrophins, microvillar proteins, glutamine synthase), digestive physiology (secreted and membrane-anchored hydrolytic enzymes), and the immune response (gram-negative binding proteins, thioester proteins, scavenger receptors, galectins, signaling pathway factors, caspases, serpins, and peroxidases). Sequence analysis of this transcriptome dataset has provided new insights into genes that might be associated with the response of the vector to the development of Leishmania.


Assuntos
Etiquetas de Sequências Expressas , Proteínas de Insetos/genética , Leishmania/fisiologia , Psychodidae/genética , Psychodidae/parasitologia , Animais , Biologia Computacional , Interações Hospedeiro-Parasita , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA
11.
J Biol Chem ; 277(51): 49921-6, 2002 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-12372834

RESUMO

The gut epithelium is an essential interface in insects that transmit parasites. We investigated the role that local innate immunity might have on vector competence, taking Stomoxys calcitrans as a model. S. calcitrans is sympatric with tsetse flies, feeds on many of the same vertebrate hosts, and is thus regularly exposed to the trypanosomes that cause African sleeping sickness and nagana. Despite this, S. calcitrans is not a cyclical vector of these trypanosomes. Trypanosomes develop exclusively in the lumen of digestive organs, and so epithelial immune mechanisms, and in particular antimicrobial peptides (AMPs), may be the prime determinants of the fate of an infection. To investigate why S. calcitrans is not a cyclical vector of trypanosomes, we have looked in its midgut for AMPs with trypanolytic activity. We have identified a new AMP of 42 amino acids, which we named stomoxyn, constitutively expressed and secreted exclusively in the anterior midgut of S. calcitrans. It displays an amphipathic helical structure and exhibits a broad activity spectrum affecting the growth of microorganisms. Interestingly, this AMP exhibits trypanolytic activity to Trypanosoma brucei rhodesiense. We argue that stomoxyn may help to explain why S. calcitrans is not a vector of trypanosomes causing African sleeping sickness and nagana.


Assuntos
Anti-Infecciosos/farmacologia , Epitélio/imunologia , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , DNA Complementar/metabolismo , Dípteros , Relação Dose-Resposta a Droga , Feminino , Fungos/efeitos dos fármacos , Biblioteca Gênica , Mucosa Intestinal/metabolismo , Cinética , Masculino , Dados de Sequência Molecular , RNA Mensageiro/metabolismo , Fatores de Tempo , Trypanosoma brucei brucei/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa