Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Mol Cell Neurosci ; 130: 103951, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942186

RESUMO

The axons containing arginine vasopressin (AVP) from the hypothalamus innervate a variety of structures including the cerebral cortex, thalamus, hippocampus and amygdala. A plethora amount of evidence indicates that activation of the V1a subtype of the vasopressin receptors facilitates anxiety-like and fear responses. As an essential structure involved in fear and anxiety responses, the amygdala, especially the lateral nucleus of amygdala (LA), receives glutamatergic innervations from the auditory cortex and auditory thalamus where high density of V1a receptors have been detected. However, the roles and mechanisms of AVP in these two important areas have not been determined, which prevents the understanding of the mechanisms whereby V1a activation augments anxiety and fear responses. Here, we used coronal brain slices and studied the effects of AVP on neuronal activities of the auditory cortical and thalamic neurons. Our results indicate that activation of V1a receptors excited both auditory cortical and thalamic neurons. In the auditory cortical neurons, AVP increased neuronal excitability by depressing multiple subtypes of inwardly rectifying K+ (Kir) channels including the Kir2 subfamily, the ATP-sensitive K+ channels and the G protein-gated inwardly rectifying K+ (GIRK) channels, whereas activation of V1a receptors excited the auditory thalamic neurons by depressing the Kir2 subfamily of the Kir channels as well as activating the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and a persistent Na+ channel. Our results may help explain the roles of V1a receptors in facilitating fear and anxiety responses. Categories: Cell Physiology.

2.
J Cell Physiol ; 239(2): e31117, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37683049

RESUMO

Leptin is an adipocyte-derived hormone that modulates food intake, energy balance, neuroendocrine status, thermogenesis, and cognition. Whereas a high density of leptin receptors has been detected in the basolateral amygdala (BLA) neurons, the physiological functions of leptin in the BLA have not been determined yet. We found that application of leptin excited BLA principal neurons by activation of the long form leptin receptor, LepRb. The LepRb-elicited excitation of BLA neurons was mediated by depression of the G protein-activated inwardly rectifying potassium (GIRK) channels. Janus Kinase 2 (JAK2) and phosphoinositide 3-kinase (PI3K) were required for leptin-induced excitation of BLA neurons and depression of GIRK channels. Microinjection of leptin into the BLA reduced food intake via activation of LepRb, JAK2, and PI3K. Our results may provide a cellular and molecular mechanism to explain the physiological roles of leptin in vivo.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Fosfatidilinositol 3-Quinases , Complexo Nuclear Basolateral da Amígdala/metabolismo , Ingestão de Alimentos , Janus Quinase 2 , Leptina/farmacologia , Leptina/metabolismo , Neurônios/metabolismo , Fosfatidilinositol 3-Quinase , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Masculino , Feminino , Animais , Ratos , Ratos Sprague-Dawley , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo
3.
J Cell Physiol ; 238(6): 1381-1404, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37186390

RESUMO

Neuromedin B (NMB) and gastrin-releasing peptide (GRP) are the two mammalian analogs in the bombesin peptide family that exert a variety of actions including emotional processing, appetitive behaviors, cognition, and tumor growth. The bombesin-like peptides interact with three receptors: the NMB-preferring bombesin 1 (BB1) receptors, the GRP-preferring bombesin 2 (BB2) receptors and the orphan bombesin 3 (BB3) receptors. Whereas, injection of bombesin into the central amygdala reduces satiety and modulates blood pressure, the underlying cellular and molecular mechanisms have not been determined. As administration of bombesin induces the expression of Fos in the lateral nucleus of the central amygdala (CeL) which expresses BB1 receptors, we probed the effects of NMB on CeL neurons using in vitro and in vivo approaches. We showed that activation of the BB1 receptors increased action potential firing frequency recorded from CeL neurons via inhibition of the inwardly rectifying K+ (Kir) channels. Activities of phospholipase Cß and protein kinase C were required, whereas intracellular Ca2+ release was unnecessary for BB1 receptor-elicited potentiation of neuronal excitability. Application of NMB directly into the CeA reduced blood pressure and heart rate and significantly reduced fear-potentiated startle. We may provide a cellular and molecular mechanism whereby bombesin-like peptides modulate anxiety and fear responses in the amygdala.


Assuntos
Neurocinina B , Peptídeos , Animais , Tonsila do Cerebelo/metabolismo , Bombesina/farmacologia , Bombesina/metabolismo , Medo , Mamíferos/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Receptores da Bombesina/metabolismo , Neurocinina B/metabolismo
4.
J Physiol ; 600(19): 4325-4345, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030507

RESUMO

The tachykinin peptides include substance P (SP), neurokinin A and neurokinin B, which interact with three G-protein-coupled neurokinin receptors, NK1Rs, NK2Rs and NK3Rs, respectively. Whereas high densities of NK3Rs have been detected in the basolateral amygdala (BLA), the functions of NK3Rs in this brain region have not been determined. We found that activation of NK3Rs by application of the selective agonist, senktide, persistently excited BLA principal neurons. NK3R-elicited excitation of BLA neurons was mediated by activation of a non-selective cation channel and depression of the inwardly rectifying K+ (Kir) channels. With selective channel blockers and knockout mice, we further showed that NK3R activation excited BLA neurons by depressing the G protein-activated inwardly rectifying K+ (GIRK) channels and activating TRPC4 and TRPC5 channels. The effects of NK3Rs required the functions of phospholipase Cß (PLCß), but were independent of intracellular Ca2+ release and protein kinase C. PLCß-mediated depletion of phosphatidylinositol 4,5-bisphosphate was involved in NK3R-induced excitation of BLA neurons. Microinjection of senktide into the BLA of rats augmented fear-potentiated startle (FPS) and this effect was blocked by prior injection of the selective NK3R antagonist SB 218795, suggesting that activation of NK3Rs in the BLA increased FPS. We further showed that TRPC4/5 and GIRK channels were involved in NK3R-elicited facilitation of FPS. Our results provide a cellular and molecular mechanism whereby NK3R activation excites BLA neurons and enhances FPS. KEY POINTS: Activation of NK3 receptors (NK3Rs) facilitates the excitability of principal neurons in rat basolateral amygdala (BLA). NK3R-induced excitation is mediated by inhibition of GIRK channels and activation of TRPC4/5 channels. Phospholipase Cß and depletion of phosphatidylinositol 4,5-bisphosphate are necessary for NK3R-mediated excitation of BLA principal neurons. Activation of NK3Rs in the BLA facilitates fear-potentiated startle response. GIRK channels and TRPC4/5 channels are involved in NK3R-mediated augmentation of fear-potentiated startle.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Receptores da Neurocinina-3 , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Medo , Camundongos , Neurocinina A/metabolismo , Neurocinina B/metabolismo , Neurocinina B/farmacologia , Fosfatidilinositóis , Fosfolipases/metabolismo , Proteína Quinase C/metabolismo , Ratos , Receptores da Neurocinina-3/metabolismo , Reflexo de Sobressalto , Substância P/metabolismo , Substância P/farmacologia , Canais de Cátion TRPC/metabolismo
5.
J Cell Physiol ; 237(1): 660-674, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34287874

RESUMO

Arginine vasopressin (AVP) is a hormone exerting vasoconstrictive and antidiuretic action in the periphery and serves as a neuromodulator in the brain. Although the hippocampus receives vasopressinergic innervation and AVP has been shown to facilitate the excitability of CA1 pyramidal neurons, the involved ionic and signaling mechanisms have not been determined. Here we found that AVP excited CA1 pyramidal neurons by activation of V1a receptors. Functions of G proteins and phospholipase Cß (PLCß) were required for AVP-elicited excitation of CA1 pyramidal neurons, whereas intracellular Ca2+ release and protein kinase C were unnecessary. PLCß-mediated depletion of phosphatidylinositol 4,5-bisphosphate (PIP2 ) was required for AVP-elicited excitation of CA1 pyramidal neurons. AVP augmented the input resistance and increased the time constants of CA1 pyramidal neurons. AVP induced an inward current in K+ -containing intracellular solution, whereas no inward currents were observed with Cs+ -containing intracellular solution. AVP-sensitive currents showed inward rectification with a reversal potential close to the K+ reversal potential, suggesting the involvement of inwardly rectifying K+ channels. AVP-induced currents were sensitive to the micromolar concentration of Ba2+ and tertiapin-Q, whereas application of ML 133, a selective Kir2 channel blocker had no effects, suggesting that AVP excited CA1 pyramidal neurons by depressing G protein-gated inwardly rectifying K+ channels. Activation of V1a receptors in the CA1 region facilitated glutamatergic transmission onto subicular pyramidal neurons, suggesting that AVP modulates network activity in the brain. Our results may provide one of the cellular and molecular mechanisms to explain the in vivo physiological functions of AVP.


Assuntos
Arginina Vasopressina , Células Piramidais , Arginina Vasopressina/metabolismo , Arginina Vasopressina/farmacologia , Hipocampo/metabolismo , Fosfolipase C beta/metabolismo , Células Piramidais/metabolismo
6.
Cereb Cortex ; 31(5): 2402-2415, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33341872

RESUMO

Oxytocin (OXT) is a nonapeptide that serves as a neuromodulator in the brain and a hormone participating in parturition and lactation in the periphery. The subiculum is the major output region of the hippocampus and an integral component in the networks that process sensory and motor cues to form a cognitive map encoding spatial, contextual, and emotional information. Whilst the subiculum expresses the highest OXT-binding sites and is the first brain region to be activated by peripheral application of OXT, the precise actions of OXT in the subiculum have not been determined. Our results demonstrate that application of the selective OXT receptor (OXTR) agonist, [Thr4,Gly7]-oxytocin (TGOT), excited subicular neurons via activation of TRPV1 channels, and depression of K+ channels. The OXTR-mediated excitation of subicular neurons required the functions of phospholipase Cß, protein kinase C, and degradation of phosphatidylinositol 4,5-bisphosphate (PIP2). OXTR-elicited excitation of subicular neurons enhanced long-term potentiation via activation of TRPV1 channels. Our results provide a cellular and molecular mechanism to explain the physiological functions of OXT in the brain.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de Ocitocina/metabolismo , Canais de Cátion TRPV/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Sinalização do Cálcio , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurônios/efeitos dos fármacos , Ocitocina/análogos & derivados , Ocitocina/farmacologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C beta/efeitos dos fármacos , Fosfolipase C beta/metabolismo , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Proteína Quinase C/efeitos dos fármacos , Proteína Quinase C/metabolismo , Ratos , Receptores de Ocitocina/agonistas , Transdução de Sinais , Canais de Cátion TRPV/efeitos dos fármacos
7.
J Physiol ; 599(12): 3101-3119, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33871877

RESUMO

KEY POINTS: Activation of V1a vasopressin receptors facilitates neuronal excitability in the medial nucleus of central amygdala (CeM) V1a receptor activation excites about 80% CeM neurons by opening a cationic conductance and about 20% CeM neurons by suppressing an inwardly rectifying K+ (Kir) channel The cationic conductance activated by V1a receptors is identified as TRPC5 channels PLCß-mediated depletion of PIP2 is involved in V1a receptor-elicited excitation of CeM neurons Intracellular Ca2+ release and PKC are unnecessary for V1a receptor-mediated excitation of CeM neurons ABSTRACT: Arginine vasopressin (AVP) serves as a hormone in the periphery to modulate water homeostasis and a neuromodulator in the brain to regulate a diverse range of functions including anxiety, social behaviour, cognitive activities and nociception. The amygdala is an essential brain region involved in modulating defensive and appetitive behaviours, pain and alcohol use disorders. Whereas activation of V1a receptors in the medial nucleus of the central amygdala (CeM) increases neuronal excitability, the involved ionic and signalling mechanisms have not been determined. We found that activation of V1a receptors in the CeM facilitated neuronal excitability predominantly by opening TRPC5 channels, although AVP excited about one fifth of the CeM neurons via suppressing an inwardly rectifying K+ (Kir) channel. G proteins and phospholipase Cß (PLCß) were required for AVP-elicited excitation of CeM neurons, whereas intracellular Ca2+ release and the activity of protein kinase C were unnecessary. Prevention of the depletion of phosphatidylinositol 4,5-bisphosphate (PIP2 ) blocked AVP-induced excitation of CeM neurons, suggesting that PLCß-mediated depletion of PIP2 is involved in AVP-mediated excitation of CeM neurons. Our results may provide a cellular and molecular mechanism to explain the anxiogenic effects of AVP in the amygdala.


Assuntos
Alcoolismo , Núcleo Central da Amígdala , Humanos , Neurônios , Fosfatidilinositol 4,5-Difosfato , Fosfolipase C beta , Canais de Cátion TRPC , Vasopressinas
8.
J Physiol ; 598(16): 3501-3520, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32458437

RESUMO

KEY POINTS: Activation of oxytocin receptors (OXTRs) facilitates neuronal excitability in rat lateral nucleus of central amygdala (CeL). OXTR-induced excitation is mediated by inhibition of inwardly rectifying K+ (Kir) channels. Phospholipase Cß is necessary for OXTR-mediated excitation of CeL neurons and depression of Kir channels. OXTR-elicited depression of Kir channels and excitation of CeL neurons require the function of Ca2+ -dependent protein kinase C. ABSTRACT: Oxytocin (OXT) is a nonapeptide that exerts anxiolytic effects in the brain. The amygdala is an important structure involved in the modulation of fear and anxiety. A high density of OXT receptors (OXTRs) has been detected in the capsular (CeC) and lateral (CeL) nucleus of the central amygdala (CeA). Previous studies have demonstrated that activation of OXTRs induces remarkable increases in neuronal excitability in the CeL/C. However, the signalling and ionic mechanisms underlying OXTR-induced facilitation of neuronal excitability have not been determined. We found that activation of OXTRs in the CeL increased action potential firing frequency recorded from neurons in this region via inhibition of the inwardly rectifying K+ channels. The functions of phospholipase Cß and protein kinase C were required for OXTR-induced augmentation of neuronal excitability. Our results provide a cellular and molecular mechanism whereby activation of OXTRs exerts anxiolytic effects.


Assuntos
Núcleo Central da Amígdala , Potenciais de Ação , Animais , Ocitocina , Fosfolipase C beta , Proteína Quinase C , Ratos , Receptores de Ocitocina
9.
J Neurosci ; 37(12): 3364-3377, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28258168

RESUMO

Loss of dopaminergic (DA) neurons leads to Parkinson's disease; however, the mechanism(s) for the vulnerability of DA neurons is(are) not fully understood. We demonstrate that TRPC1 regulates the L-type Ca2+ channel that contributes to the rhythmic activity of adult DA neurons in the substantia nigra region. Store depletion that activates TRPC1, via STIM1, inhibits the frequency and amplitude of the rhythmic activity in DA neurons of wild-type, but not in TRPC1-/-, mice. Similarly, TRPC1-/- substantia nigra neurons showed increased L-type Ca2+ currents, decreased stimulation-dependent STIM1-Cav1.3 interaction, and decreased DA neurons. L-type Ca2+ currents and the open channel probability of Cav1.3 channels were also reduced upon TRPC1 activation, whereas increased Cav1.3 currents were observed upon STIM1 or TRPC1 silencing. Increased interaction between Cav1.3-TRPC1-STIM1 was observed upon store depletion and the loss of either TRPC1 or STIM1 led to DA cell death, which was prevented by inhibiting L-type Ca2+ channels. Neurotoxins that mimic Parkinson's disease increased Cav1.3 function, decreased TRPC1 expression, inhibited Tg-mediated STIM1-Cav1.3 interaction, and induced caspase activation. Importantly, restoration of TRPC1 expression not only inhibited Cav1.3 function but increased cell survival. Together, we provide evidence that TRPC1 suppresses Cav1.3 activity by providing an STIM1-based scaffold, which is essential for DA neuron survival.SIGNIFICANCE STATEMENT Ca2+ entry serves critical cellular functions in virtually every cell type, and appropriate regulation of Ca2+ in neurons is essential for proper function. In Parkinson's disease, DA neurons are specifically degenerated, but the mechanism is not known. Unlike other neurons, DA neurons depend on Cav1.3 channels for their rhythmic activity. Our studies show that, in normal conditions, the pacemaking activity in DA neurons is inhibited by the TRPC1-STIM1 complex. Neurotoxins that mimic Parkinson's disease target TRPC1 expression, which leads to an abnormal increase in Cav1.3 activity, thereby causing degeneration of DA neurons. These findings link TRPC1 to Cav1.3 regulation and provide important indications about how disrupting Ca2+ balance could have a direct implication in the treatment of Parkinson's patients.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/fisiologia , Sobrevivência Celular/fisiologia , Neurônios Dopaminérgicos/patologia , Molécula 1 de Interação Estromal/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Neurônios Dopaminérgicos/citologia , Ativação do Canal Iônico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
Hippocampus ; 27(5): 613-631, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28188663

RESUMO

In the brain, histamine (HA) serves as a neuromodulator and a neurotransmitter released from the tuberomammillary nucleus (TMN). HA is involved in wakefulness, thermoregulation, energy homeostasis, nociception, and learning and memory. The medial entorhinal cortex (MEC) receives inputs from the TMN and expresses HA receptors (H1 , H2 , and H3 ). We investigated the effects of HA on GABAergic transmission in the MEC and found that HA significantly increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) with an EC50 of 1.3 µM, but failed to significantly alter sIPSC amplitude. HA-induced increases in sIPSC frequency were sensitive to tetrodotoxin (TTX), required extracellular Ca2+ , and persisted when GDP-ß-S, a G-protein inactivator, was applied postsynaptically via the recording pipettes, indicating that HA increased GABA release by facilitating the excitability of GABAergic interneurons in the MEC. Recordings from local MEC interneurons revealed that HA significantly increased their excitability as determined by membrane depolarization, generation of an inward current at -65 mV, and augmentation of action potential firing frequency. Both H1 and H2 receptors were involved in HA-induced increases in sIPSCs and interneuron excitability. Immunohistochemical staining showed that both H1 and H2 receptors are expressed on GABAergic interneurons in the MEC. HA-induced depolarization of interneurons involved a mixed ionic mechanism including activation of a Na+ -permeable cation channel and inhibition of a cesium-sensitive inward rectifier K+ channel, although HA also inhibited the delayed rectifier K+ channels. Our results may provide a cellular mechanism, at least partially, to explain the roles of HA in the brain. © 2017 Wiley Periodicals, Inc.


Assuntos
Córtex Entorrinal/metabolismo , Histamina/metabolismo , Interneurônios/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Cátions/metabolismo , Césio/metabolismo , Córtex Entorrinal/citologia , Córtex Entorrinal/efeitos dos fármacos , Agonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos/farmacologia , Interneurônios/citologia , Interneurônios/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H2/metabolismo , Receptores Histamínicos H3/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Técnicas de Cultura de Tecidos
11.
Hippocampus ; 27(9): 971-984, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28558129

RESUMO

The hippocampus is a crucial component for cognitive and emotional processing. The subiculum provides much of the output for this structure but the modulation and function of this region is surprisingly under-studied. The neuromodulator somatostatin (SST) interacts with five subtypes of SST receptors (sst1 to sst5 ) and each of these SST receptor subtypes is coupled to Gi proteins resulting in inhibition of adenylyl cyclase (AC) and decreased level of intracellular cAMP. SST modulates many physiological functions including cognition, emotion, autonomic responses and locomotion. Whereas SST has been shown to depress neuronal excitability in the subiculum, the underlying cellular and molecular mechanisms have not yet been determined. Here, we show that SST hyperpolarized two classes of subicular neurons with a calculated EC50 of 0.1 µM. Application of SST (1 µM) induced outward holding currents by primarily activating K+ channels including the G-protein-activated inwardly-rectifying potassium channels (GIRK) and KCNQ (M) channels, although inhibition of cation channels in some cells may also be implicated. SST-elicited hyperpolarization was mediated by activation of sst2 receptors and required the function of G proteins. The SST-induced hyperpolarization resulted from decreased activity of AC and reduced levels of cAMP but did not require the activity of either PKA or PKC. Inhibition of Epac2, a guanine nucleotide exchange factor, partially blocked SST-mediated hyperpolarization of subicular neurons. Furthermore, application of SST resulted in a robust depression of subicular action potential firing and the SST-induced hyperpolarization was responsible for its inhibitory action on LTP at the CA1-subicilum synapses. Our results provide a novel cellular and molecular mechanism that may explain the roles of SST in modulation of subicular function and be relevant to SST-related physiological functions.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipocampo/citologia , Canais de Potássio KCNQ/metabolismo , Neurônios/efeitos dos fármacos , Somatostatina/farmacologia , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Fatores de Troca do Nucleotídeo Guanina/agonistas , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Modelos Biológicos , Rede Nervosa/efeitos dos fármacos , Neurônios/classificação , Neurotransmissores/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Somatostatina/agonistas , Somatostatina/antagonistas & inibidores , Tetrodotoxina/farmacologia
12.
Cereb Cortex ; 26(3): 977-90, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25405940

RESUMO

Neurotensin (NT) is a 13-amino acid peptide and serves as a neuromodulator in the brain. Whereas NT has been implicated in learning and memory, the underlying cellular and molecular mechanisms are ill-defined. Because the dentate gyrus receives profound innervation of fibers containing NT and expresses high density of NT receptors, we examined the effects of NT on the excitability of dentate gyrus granule cells (GCs). Our results showed that NT concentration dependently increased action potential (AP) firing frequency of the GCs by the activation of NTS1 receptors resulting in the depolarization of the GCs. NT-induced enhancement of AP firing frequency was not caused indirectly by releasing glutamate, GABA, acetylcholine, or dopamine, but due to the inhibition of TASK-3 K(+) channels. NT-mediated excitation of the GCs was G protein dependent, but independent of phospholipase C, intracellular Ca(2+) release, and protein kinase C. Immunoprecipitation experiment demonstrates that the activation of NTS1 receptors induced the association of Gαq/11 and TASK-3 channels suggesting a direct coupling of Gαq/11 to TASK-3 channels. Endogenously released NT facilitated the excitability of the GCs contributing to the induction of long-term potentiation at the perforant path-GC synapses. Our results provide a cellular mechanism that helps to explain the roles of NT in learning and memory.


Assuntos
Giro Denteado/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Neurônios/fisiologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio/metabolismo , Receptores de Neurotensina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Giro Denteado/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Células HEK293 , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurotensina/metabolismo , Canais de Potássio/genética , Ratos Sprague-Dawley , Receptores de Neurotensina/genética , Técnicas de Cultura de Tecidos
13.
J Neurosci ; 34(20): 7027-42, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24828655

RESUMO

Neurotensin (NT) is a tridecapeptide distributed in the CNS, including the entorhinal cortex (EC), a structure that is crucial for learning and memory and undergoes the earliest pathological alterations in Alzheimer's disease (AD). Whereas NT has been implicated in modulating cognition, the cellular and molecular mechanisms by which NT modifies cognitive processes and the potential therapeutic roles of NT in AD have not been determined. Here we examined the effects of NT on neuronal excitability and spatial learning in the EC, which expresses high density of NT receptors. Brief application of NT induced persistent increases in action potential firing frequency, which could last for at least 1 h. NT-induced facilitation of neuronal excitability was mediated by downregulation of TREK-2 K(+) channels and required the functions of NTS1, phospholipase C, and protein kinase C. Microinjection of NT or NTS1 agonist, PD149163, into the EC increased spatial learning as assessed by the Barnes Maze Test. Activation of NTS1 receptors also induced persistent increases in action potential firing frequency and significantly improved the memory status in APP/PS1 mice, an animal model of AD. Our study identifies a cellular substrate underlying learning and memory and suggests that NTS1 agonists may exert beneficial actions in an animal model of AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Córtex Entorrinal/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurotensina/farmacologia , Receptores de Neurotensina/agonistas , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Doença de Alzheimer/psicologia , Animais , Modelos Animais de Doenças , Córtex Entorrinal/fisiopatologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Neurônios/fisiologia
14.
Hippocampus ; 25(11): 1299-313, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25740117

RESUMO

Whereas the ionotropic glutamate receptors are the major mediator in glutamatergic transmission, the metabotropic glutamate receptors (mGluRs) usually play a modulatory role. Whereas the entorhinal cortex (EC) is an essential structure involved in the generation and propagation of epilepsy, the roles and mechanisms of mGluRs in epilepsy in the EC have not been determined. Here, we studied the effects of activation of group II metabotropic glutamate receptors (mGluRs II) on epileptiform activity induced by picrotoxin or deprivation of extracellular Mg2+ and neuronal excitability in the medial EC. We found that activation of mGluRs II by application of the selective agonist, LY354740, exerted robust inhibition on epileptiform activity. LY354740 hyperpolarized entorhinal neurons via activation of a K+ conductance and inhibition of a Na+ -permeable channel. LY354740-induced hyperpolarization was G protein-dependent, but independent of adenylyl cyclase and protein kinase A. However, the function of Gßγ was involved in mGluRs II-mediated depression of both neuronal excitability and epileptiform activity. Our results provide a novel cellular mechanism to explain the antiepileptic effects of mGluRs II in the treatment of epilepsy.


Assuntos
Córtex Entorrinal/metabolismo , Epilepsia/metabolismo , Magnésio/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Potenciais Sinápticos/fisiologia , Animais , Compostos Bicíclicos com Pontes/farmacologia , Modelos Animais de Doenças , Córtex Entorrinal/efeitos dos fármacos , Epilepsia/tratamento farmacológico , Agonistas de Aminoácidos Excitatórios/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/agonistas , Potenciais Sinápticos/efeitos dos fármacos
15.
Cereb Cortex ; 24(12): 3195-208, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23843440

RESUMO

Whereas the entorhinal cortex (EC) receives profuse dopaminergic innervations from the midbrain, the effects of dopamine (DA) on γ-Aminobutyric acid (GABA)ergic interneurons in this brain region have not been determined. We probed the actions of DA on GABAA receptor-mediated synaptic transmission in the EC. Application of DA increased the frequency, not the amplitude, of spontaneous IPSCs (sIPSCs) and miniature IPSCs (mIPSCs) recorded from entorhinal principal neurons, but slightly reduced the amplitude of the evoked IPSCs. The effects of DA were unexpectedly found to be mediated by α1 adrenoreceptors, but not by DA receptors. DA endogenously released by the application of amphetamine also increased the frequency of sIPSCs. Ca(2+) influx via T-type Ca(2+) channels was required for DA-induced facilitation of sIPSCs and mIPSCs. DA depolarized and enhanced the firing frequency of action potentials of interneurons. DA-induced depolarization was independent of extracellular Na(+) and Ca(2+) and did not require the functions of hyperpolarization-activated (Ih) channels and T-type Ca(2+) channels. DA-generated currents showed a reversal potential close to the K(+) reversal potential and inward rectification, suggesting that DA inhibits the inward rectifier K(+) channels (Kirs). Our results demonstrate that DA facilitates GABA release by activating α1 adrenoreceptors to inhibit Kirs, which further depolarize interneurons resulting in secondary Ca(2+) influx via T-type Ca(+) channels.


Assuntos
Canais de Cálcio Tipo T/fisiologia , Dopamina/metabolismo , Córtex Entorrinal/citologia , Neurônios/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Bloqueadores dos Canais de Cálcio/farmacologia , Quelantes/farmacologia , Dopamina/farmacologia , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Estimulação Elétrica , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Mibefradil/farmacologia , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
16.
Hippocampus ; 24(1): 21-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23966303

RESUMO

Bombesin and the bombesin-like peptides including neuromedin B (NMB) and gastrin-releasing peptide (GRP) are important neuromodulators in the brain. We studied their effects on GABAergic transmission and epileptiform activity in the entorhinal cortex (EC). Bath application of bombesin concentration-dependently increased both the frequency and amplitude of sIPSCs recorded from the principal neurons in the EC. Application of NMB and GRP exerted the same effects as bombesin. Bombesin had no effects on mIPSCs recorded in the presence of TTX but slightly depressed the evoked IPSCs. Omission of extracellular Ca(2+) or inclusion of voltage-gated Ca(2+) channel blockers, Cd(2+) and Ni(2+), blocked bombesin-induced increases in sIPSCs suggesting that bombesin increases GABA release via facilitating extracellular Ca(2+) influx. Bombesin induced membrane depolarization and slightly increased the input resistance of GABAergic interneurons recorded from layer III of the EC. The action potential firing frequency of the interneurons was also increased by bombesin. Bombesin-mediated depolarization of interneurons was unlikely to be mediated by the opening of a cationic conductance but due to the inhibition of inward rectifier K(+) channels. Bath application of bombesin, NMB and GRP depressed the frequency of the epileptiform activity elicited by deprivation of Mg(2+) from the extracellular solution suggesting that bombesin and the bombesin-like peptides have antiepileptic effects in the brain.


Assuntos
Anticonvulsivantes/farmacologia , Bombesina/farmacologia , Córtex Entorrinal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Bombesina/metabolismo , Córtex Entorrinal/fisiologia , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Convulsões/metabolismo , Convulsões/fisiopatologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo
17.
Cereb Cortex ; 22(3): 584-94, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21677028

RESUMO

Glutamate interacts with ionotropic and metabotropic glutamate receptors (mGluRs). Whereas the entorhinal cortex (EC) is a principal structure involved in learning and memory, the roles of mGluRs in synaptic transmission in the EC have not been completely determined. Here, we show that activation of group II mGluRs (mGluR II) induced robust depression of glutamatergic transmission in the EC. The mGluR II-induced depression was due to a selective reduction of presynaptic release probability without alterations of the quantal size and the number of release sites. The mechanisms underlying mGluR II-mediated suppression of glutamate release included the inhibition of presynaptic release machinery and the depression of presynaptic P/Q-type Ca(2+) channels. Whereas mGluR II-induced depression required the function of Gα(i/o) proteins, protein kinase A (PKA) pathway was only involved in mGluR II-mediated inhibition of release machinery and thereby partially required for mGluR II-induced inhibition of glutamate release. Presynaptic stimulation at 5 Hz for 10 min also induced depression of glutamatergic transmission via activation of presynaptic mGluR II suggesting an endogenous role for mGluR II in modulating glutamatergic transmission.


Assuntos
Córtex Entorrinal/fisiologia , Ácido Glutâmico/metabolismo , Inibição Neural/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Transmissão Sináptica/fisiologia , Animais , Modelos Neurológicos , Técnicas de Cultura de Órgãos , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo
18.
Neurobiol Dis ; 45(3): 902-12, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22186421

RESUMO

Though loss of function in CBP/p300, a family of CREB-binding proteins, has been causally associated with a variety of human neurological disorders, such as Rubinstein-Taybi syndrome, Huntington's disease and drug addiction, the role of EP300 interacting inhibitor of differentiation 1 (EID1), a CBP/p300 inhibitory protein, in modulating neurological functions remains completely unknown. Through the examination of EID1 expression and cellular distribution, we discovered that there is a significant increase of EID1 nuclear translocation in the cortical neurons of Alzheimer's disease (AD) patient brains compared to that of control brains. To study the potential effects of EID1 on neurological functions associated with learning and memory, we generated a transgenic mouse model with a neuron-specific expression of human EID1 gene in the brain. Overexpression of EID1 led to an increase in its nuclear localization in neurons mimicking that seen in human AD brains. The transgenic mice had a disrupted neurofilament organization and increase of astrogliosis in the cortex and hippocampus. Furthermore, we demonstrated that overexpression of EID1 reduced hippocampal long-term potentiation and impaired spatial learning and memory function in the transgenic mice. Our results indicated that the negative effects of extra nuclear EID1 in transgenic mouse brains are likely due to its inhibitory function on CBP/p300 mediated histone and p53 acetylation, thus affecting the expression of downstream genes involved in the maintenance of neuronal structure and function. Together, our data raise the possibility that alteration of EID1 expression, particularly the increase of EID1 nuclear localization that inhibits CBP/p300 activity in neuronal cells, may play an important role in AD pathogenesis.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Transtornos da Memória/etiologia , Plasticidade Neuronal/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Encéfalo/anatomia & histologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/patologia , Estimulação Elétrica , Proteína Glial Fibrilar Ácida/metabolismo , Histonas/metabolismo , Humanos , Técnicas In Vitro , Aprendizagem em Labirinto/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Técnicas de Patch-Clamp , Fosfoproteínas/metabolismo , Fosfopiruvato Hidratase/metabolismo , Transporte Proteico/fisiologia , Proteínas Repressoras/genética , Teratocarcinoma/patologia , Transfecção , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
19.
Hippocampus ; 22(6): 1438-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22072552

RESUMO

Although cholecystokinin (CCK) has long been known to exert anxiogenic effects in both animal anxiety models and humans, the underlying cellular and molecular mechanisms are ill-defined. CCK interacts with CCK-1 and CCK-2 receptors resulting in up-regulation of phospholipase C (PLC) and protein kinase C (PKC). However, the roles of PLC and PKC in CCK-mediated anxiogenic effects have not been determined. We have shown previously that CCK facilitates glutamate release in the hippocampus especially at the synapses formed by the perforant path and dentate gyrus granule cells via activations of PLC and PKC. Here we further demonstrated that CCK enhanced NMDA receptor function in dentate gyrus granule cells via activation of PLC and PKC pathway. At the single-channel level, CCK increased NMDA single-channel open probability and mean open time, reduced the mean close time, and had no effects on the conductance of NMDA channels. Because elevation of glutamatergic functions results in anxiety, we explored the roles of PLC and PKC in CCK-induced anxiogenic actions using the Vogel Conflict Test (VCT). Our results from both pharmacological approach and knockout mice demonstrated that microinjection of CCK into the dentate gyrus concentration-dependently increased anxiety-like behavior via activation of PLC and PKC. Our results provide a novel unidentified signaling mechanism whereby CCK increases anxiety.


Assuntos
Ansiedade/induzido quimicamente , Ansiedade/enzimologia , Colecistocinina/administração & dosagem , Proteína Quinase C/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Fosfolipases Tipo C/fisiologia , Animais , Colecistocinina/fisiologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Feminino , Ativação do Canal Iônico/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microinjeções , Ratos , Ratos Sprague-Dawley
20.
eNeuro ; 9(4)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35788107

RESUMO

Arginine vasopressin (AVP) serves as a neuromodulator in the brain. The hippocampus is one of the major targets for AVP, as it has been demonstrated that the hippocampus receives vasopressinergic innervation and expresses AVP receptors. The dentate gyrus (DG) granule cells (GCs) serve as a gate governing the inflow of information to the hippocampus. High densities of AVP receptors are expressed in the DG GCs. However, the roles and the underlying cellular and molecular mechanisms of AVP in the DG GCs have not been determined. We addressed this question by recording from the DG GCs in rat hippocampal slices. Our results showed that application of AVP concentration-dependently evoked an inward holding current recorded from the DG GCs. AVP depolarized the DG GCs and increased their action potential firing frequency. The excitatory effects of AVP were mediated by activation of V1a receptors and required the function of phospholipase Cß (PLCß). Whereas intracellular Ca2+ release and protein kinase C activity were unnecessary, PLCß-induced depletion of phosphatidylinositol 4,5-bisphosphate was involved in AVP-evoked excitation of the DG GCs. AVP excited the DG GCs by depression of the ATP-sensitive K+ channels, which were required for AVP-elicited facilitation of long-term potentiation at the perforant path-GC synapses. Our results may provide a cellular and molecular mechanism to explain the physiological functions of AVP, such as learning and memory, and pathologic disorders like anxiety.


Assuntos
Arginina Vasopressina , Potenciação de Longa Duração , Trifosfato de Adenosina/farmacologia , Animais , Arginina Vasopressina/farmacologia , Giro Denteado , Potenciação de Longa Duração/fisiologia , Fosfolipase C beta , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa