Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Biotechnol Bioeng ; 120(10): 3025-3038, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37269469

RESUMO

Oxygen and extracellular matrix (ECM)-derived biopolymers play vital roles in regulating many cellular functions in both the healthy and diseased liver. This study highlights the significance of synergistically tuning the internal microenvironment of three-dimensional (3D) cell aggregates composed of hepatocyte-like cells from the HepG2 human hepatocellular carcinoma cell line and hepatic stellate cells (HSCs) from the LX-2 cell line to enhance oxygen availability and phenotypic ECM ligand presentation for promoting the native metabolic functions of the human liver. First, fluorinated (PFC) chitosan microparticles (MPs) were generated with a microfluidic chip, then their oxygen transport properties were studied using a custom ruthenium-based oxygen sensing approach. Next, to allow for integrin engagements the surfaces of these MPs were functionalized using liver ECM proteins including fibronectin, laminin-111, laminin-511, and laminin-521, then they were used to assemble composite spheriods along with HepG2 cells and HSCs. After in vitro culture, liver-specific functions and cell adhesion patterns were compared between groups and cells showed enhanced liver phenotypic responses to laminin-511 and 521 as evidenced via enhanced E-cadherin and vinculin expression, as well as albumin and urea secretion. Furthermore, hepatocytes and HSCs exhibited more pronounced phenotypic arrangements when cocultured with laminin-511 and 521 modified MPs providing clear evidence that specific ECM proteins have distinctive roles in the phenotypic regulation of liver cells in engineering 3D spheroids. This study advances efforts to create more physiologically relevant organ models allowing for well-defined conditions and phenotypic cell signaling which together improve the relevance of 3D spheroid and organoid models.


Assuntos
Proteínas da Matriz Extracelular , Laminina , Humanos , Proteínas da Matriz Extracelular/metabolismo , Laminina/metabolismo , Fígado , Hepatócitos/metabolismo , Matriz Extracelular/metabolismo
2.
Bioconjug Chem ; 31(9): 2125-2135, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32820900

RESUMO

Neural stem cells (NSCs) provide a strategy to replace damaged neurons following traumatic central nervous system injuries. A major hurdle to translation of this therapy is that direct application of NSCs to CNS injury does not support sufficient neurogenesis due to lack of proper cues. To provide prolonged spatial cues to NSCs IFN-γ was immobilized to biomimetic hydrogel substrate to supply physical and biochemical signals to instruct the encapsulated NSCs to be neurogenic. However, the immobilization of factors, including IFN-γ, versus soluble delivery of the same factor, has been incompletely characterized especially with respect to activation of signaling and metabolism in cells over longer time points. In this study, protein and metabolite changes in NSCs induced by immobilized versus soluble IFN-γ at 7 days were evaluated. Soluble IFN-γ, refreshed daily over 7 days, elicited stronger responses in NSCs compared to immobilized IFN-γ, indicating that immobilization may not sustain signaling or has altered ligand/receptor interaction and integrity. However, both IFN-γ delivery types supported increased ßIII tubulin expression in parallel with canonical and noncanonical receptor-signaling compared to no IFN-γ. Global metabolomics and pathway analysis revealed that soluble and immobilized IFN-γ altered metabolic pathway activities including energy, lipid, and amino acid synthesis, with soluble IFN-γ having the greatest metabolic impact overall. Finally, soluble and immobilized IFN-γ support mitochondrial voltage-dependent anion channel (VDAC) expression that correlates to differentiated NSCs. This work utilizes new methods to evaluate cell responses to protein delivery and provides insight into mode of action that can be harnessed to improve regenerative medicine-based strategies.


Assuntos
Materiais Biocompatíveis/farmacologia , Proteínas Imobilizadas/farmacologia , Interferon gama/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Metabolômica , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Ratos Endogâmicos F344 , Transdução de Sinais/efeitos dos fármacos
3.
Bioconjug Chem ; 31(5): 1362-1369, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32329609

RESUMO

Immobilizing a signaling protein to guide cell behavior has been employed in a wide variety of studies. This approach draws inspiration from biology, where specific, affinity-based interactions between membrane receptors and immobilized proteins in the extracellular matrix guide many developmental and homeostatic processes. Synthetic immobilization approaches, however, do not necessarily recapitulate the in vivo signaling system and potentially lead to artificial receptor-ligand interactions. To investigate the effects of one example of engineered receptor-ligand interactions, we focus on the immobilization of interferon-γ (IFN-γ), which has been used to drive differentiation of neural stem cells (NSCs). To isolate the effect of ligand immobilization, we transfected Cos-7 cells with only interferon-γ receptor 1 (IFNγR1), not IFNγR2, so that the cells could bind IFN-γ but were incapable of canonical signal transduction. We then exposed the cells to surfaces containing covalently immobilized IFN-γ and studied membrane morphology, receptor-ligand dynamics, and receptor activation. We found that exposing cells to immobilized but not soluble IFN-γ drove the formation of filopodia in both NSCs and Cos-7, showing that covalently immobilizing IFN-γ is enough to affect cell behavior, independently of canonical downstream signaling. Overall, this work suggests that synthetic growth factor immobilization can influence cell morphology beyond enhancing canonical cell responses through the prolonged signaling duration or spatial patterning enabled by protein immobilization. This suggests that differentiation of NSCs could be driven by canonical and non-canonical pathways when IFN-γ is covalently immobilized. This finding has broad implications for bioengineering approaches to guide cell behavior, as one ligand has the potential to impact multiple pathways even when cells lack the canonical signal transduction machinery.


Assuntos
Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Interferon gama/química , Interferon gama/metabolismo , Pseudópodes/metabolismo , Receptores de Interferon/metabolismo , Transdução de Sinais , Animais , Células COS , Chlorocebus aethiops , Ligantes , Receptores de Interferon/genética , Transfecção , Receptor de Interferon gama
4.
Biomacromolecules ; 21(10): 4030-4042, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32902971

RESUMO

Thread size and polymer composition are critical properties to consider for achieving a positive healing outcome with a wound dressing. Three-dimensional (3D) printed scaffolds and electrospun mats both offer distinct advantages as replaceable wound dressings. This research aims to determine if the thread size and polymer compositions of the scaffolds affect skin wound healing outcomes, an aspect that has not been adequately explored. Using a modular polymer platform, four polyester direct-write 3D printed scaffolds and electrospun mats were fabricated into wound dressings. The dressings were applied to splinted, full thickness skin wounds in an excisional wound rat model and evaluated against control wounds to which no dressing was applied. Wound closure rates and reduction of the wound bed width were not affected by the thread size or polymer composition. However, epidermal thickness was larger in wounds treated with electrospun dressings and was slightly affected by the polymer composition. Two of the four tested polymer compositions lead to delayed reorganization of granulation tissues. Moreover, enhanced angiogenesis was seen in wounds treated with 3D printed dressings compared to those treated with electrospun dressings. The results from this study can be used to inform the choice of dressing architecture and polymer compositions to achieve positive wound healing outcomes.


Assuntos
Bandagens , Polímeros , Animais , Poliésteres , Impressão Tridimensional , Ratos , Cicatrização
5.
Biomacromolecules ; 20(9): 3445-3452, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31460746

RESUMO

Insufficient endogenous neural stem cell (NSC) migration to injury sites and incomplete replenishment of neurons complicates recovery following central nervous system (CNS) injury. Such insufficient migration can be addressed by delivering soluble chemotactic factors, such as stromal cell-derived factor 1-α (SDF-1α), to sites of injury. However, simply enhancing NSC migration is likely to result in insufficient regeneration, as the cells need to be given additional signals. Immobilized proteins, such as interferon-γ (IFN-γ) can encourage neurogenic differentiation of NSCs. Here, we combined both protein delivery paradigms: soluble SDF-1α delivery to enhance NSC migration alongside covalently tethered IFN-γ to differentiate the recruited NSCs into neurons. To slow the release of soluble SDF-1α, we copolymerized methacrylated heparin with methacrylamide chitosan (MAC), to which we tethered IFN-γ. We found that this hydrogel system could result in soft hydrogels with a ratio of up to 70:30 MAC/heparin by mass, which enabled the continuous release of SDF-1α over a period of 2 weeks. The hydrogels recruited NSCs in vitro over 2 weeks, proportional to their release rate: the 70:30 heparin gels recruited a consistent number of NSCs at each time point, while the formulations with less heparin recruited NSCs at only early time points. After remaining in contact with the hydrogels for 8 days, NSCs successfully differentiated into neurons. CNS regeneration is a complex challenge, and this system provides a foundation to address multiple aspects of that challenge.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Quimiocina CXCL12/genética , Interferon gama/genética , Células-Tronco Neurais/efeitos dos fármacos , Acrilamidas/química , Acrilamidas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Sistema Nervoso Central/lesões , Sistema Nervoso Central/patologia , Quitosana/química , Quitosana/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Proteínas Imobilizadas/química , Proteínas Imobilizadas/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos , Regeneração/efeitos dos fármacos , Solubilidade/efeitos dos fármacos
6.
Cells Tissues Organs ; 205(5-6): 350-371, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30273927

RESUMO

Oxygen is a vital source of energy necessary to sustain and complete embryonic development. Not only is oxygen the driving force for many cellular functions and metabolism, but it is also involved in regulating stem cell fate, morphogenesis, and organogenesis. Low oxygen levels are the naturally preferred microenvironment for most processes during early development and mainly drive proliferation. Later on, more oxygen and also nutrients are needed for organogenesis and morphogenesis. Therefore, it is critical to maintain oxygen levels within a narrow range as required during development. Modulating oxygen tensions is performed via oxygen homeostasis mainly through the function of hypoxia-inducible factors. Through the function of these factors, oxygen levels are sensed and regulated in different tissues, starting from their embryonic state to adult development. To be able to mimic this process in a tissue engineering setting, it is important to understand the role and levels of oxygen in each developmental stage, from embryonic stem cell differentiation to organogenesis and morphogenesis. Taking lessons from native tissue microenvironments, researchers have explored approaches to control oxygen tensions such as hemoglobin-based, perfluorocarbon-based, and oxygen-generating biomaterials, within synthetic tissue engineering scaffolds and organoids, with the aim of overcoming insufficient or nonuniform oxygen levels and nutrient supply.


Assuntos
Desenvolvimento Embrionário , Oxigênio/metabolismo , Engenharia Tecidual , Animais , Diferenciação Celular , Hipóxia Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Morfogênese , Organogênese , Oxigênio/análise , Engenharia Tecidual/métodos
7.
ACS Appl Bio Mater ; 7(7): 4442-4453, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38888242

RESUMO

Silicone rubber tissue expanders and breast implants are associated with chronic inflammation, leading to the formation of fibrous capsules. If the inflammation is left untreated, the fibrous capsules can become hard and brittle and lead to formation of capsular contracture. When capsular contracture occurs, implant failure and reoperation is unavoidable. Fibrous capsule formation to medical grade silicone rubber breast implants and polyisobutylene-based electrospun fiber mats attached to silicone rubber with and without an anti-inflammatory therapeutic were compared. A linear polyisobutylene (PIB)-based thermoplastic elastomer is currently applied as a polymer coating for drug release on coronary stents to reduce restenosis. Recent work has created a drug releasing electrospun fiber mat from PIB-based materials. Important to this study, poly(alloocimene-b-isobutylene-b-alloocimene) (AIBA) was electrospun with zafirlukast (ZAF). ZAF is an anti-inflammatory drug that is able to reduce capsule formation and complications to silicone breast implants. Fiber mats are advantageous for local drug delivery because of their high porosity and surface area for drug release. The chief hypothesis was that local release of ZAF from AIBA would lower inflammatory signaling and resulting capsular formation after 90 days in vivo. Electrospun AIBA mats locally released ZAF, lowering inflammation and fibrous capsule development compared to medical grade silicone rubber. Locally and orally released ZAF led to similar results, but the former had much lower concentration that highlights local delivery's therapeutic potential. Released ZAF from AIBA fiber mats mitigated inflammation and serves as an alternative to existing clinical approaches.


Assuntos
Implantes de Mama , Teste de Materiais , Polienos , Implantes de Mama/efeitos adversos , Polienos/química , Compostos de Tosil/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais , Tamanho da Partícula , Feminino , Polímeros/química , Humanos , Xilenos/química , Indóis , Sulfonamidas , Fenilcarbamatos
8.
Adv Biol (Weinh) ; 8(2): e2300386, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37845003

RESUMO

In metabolically active tumors, responses of cells to drugs are heavily influenced by oxygen availability via the surrounding vasculature alongside the extracellular matrix signaling. The objective of this study is to investigate hepatotoxicity by replicating critical features of hepatocellular carcinoma (HCC). This includes replicating 3D structures, metabolic activities, and tumor-specific markers. The internal environment of spheroids comprised of cancerous human patient-derived hepatocytes using microparticles is modulated to enhance the oxygenation state and recreate cell-extracellular matrix interactions. Furthermore, the role of hepatic stellate cells in maintaining hepatocyte survival and function is explored and hepatocytes from two cellular sources (immortalized and patient-derived) to create four formulations with and without microparticles are utilized. To investigate drug-induced changes in metabolism and apoptosis in liver cells, coculture spheroids with and without microparticles are exposed to three hepatotoxic drugs. The use of microparticles increases levels of apoptotic markers in both liver models under drug treatments. This coincides with reduced levels of anti-apoptotic proteins and increased levels of pro-apoptotic proteins. Moreover, cells from different origins undergo apoptosis through distinct apoptotic pathways in response to identical drugs. This 3D microphysiological system offers a viable tool for liver cancer research to investigate mechanisms of apoptosis under different microenvironmental conditions.


Assuntos
Carcinoma Hepatocelular , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Técnicas de Cocultura , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular
9.
Fluids Barriers CNS ; 21(1): 19, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409031

RESUMO

BACKGROUND: Syringomyelia (SM) is characterized by the development of fluid-filled cavities, referred to as syrinxes, within the spinal cord tissue. The molecular etiology of SM post-spinal cord injury (SCI) is not well understood and only invasive surgical based treatments are available to treat SM clinically. This study builds upon our previous omics studies and in vitro cellular investigations to further understand local fluid osmoregulation in post-traumatic SM (PTSM) to highlight important pathways for future molecular interventions. METHODS: A rat PTSM model consisting of a laminectomy at the C7 to T1 level followed by a parenchymal injection of 2 µL quisqualic acid (QA) and an injection of 5 µL kaolin in the subarachnoid space was utilized 6 weeks after initial surgery, parenchymal fluid and cerebrospinal fluid (CSF) were collected, and the osmolality of fluids were analyzed. Immunohistochemistry (IHC), metabolomics analysis using LC-MS, and mass spectrometry-based imaging (MSI) were performed on injured and laminectomy-only control spinal cords. RESULTS: We demonstrated that the osmolality of the local parenchymal fluid encompassing syrinxes was higher compared to control spinal cords after laminectomy, indicating a local osmotic imbalance due to SM injury. Moreover, we also found that parenchymal fluid is more hypertonic than CSF, indicating establishment of a local osmotic gradient in the PTSM injured spinal cord (syrinx site) forcing fluid into the spinal cord parenchyma to form and/or expand syrinxes. IHC results demonstrated upregulation of betaine, ions, water channels/transporters, and enzymes (BGT1, AQP1, AQP4, CHDH) at the syrinx site as compared to caudal and rostral sites to the injury, implying extensive local osmoregulation activities at the syrinx site. Further, metabolomics analysis corroborated alterations in osmolality at the syrinx site by upregulation of small molecule osmolytes including betaine, carnitine, glycerophosphocholine, arginine, creatine, guanidinoacetate, and spermidine. CONCLUSIONS: In summary, PTSM results in local osmotic disturbance that propagates at 6 weeks following initial injury. This coincides with and may contribute to syrinx formation/expansion.


Assuntos
Traumatismos da Medula Espinal , Siringomielia , Ratos , Animais , Siringomielia/etiologia , Osmorregulação , Betaína , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/metabolismo , Imageamento por Ressonância Magnética
10.
Biomater Sci ; 12(13): 3458-3470, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38836321

RESUMO

Current treatment strategies for infection of chronic wounds often result in compromised healing and necrosis due to antibiotic toxicity, and underlying biomarkers affected by treatments are not fully known. Here, a multifunctional dressing was developed leveraging the unique wound-healing properties of chitosan, a natural polysaccharide known for its numerous benefits in wound care. The dressing consists of an oxygenating perfluorocarbon functionalized methacrylic chitosan (MACF) hydrogel incorporated with antibacterial polyhexamethylene biguanide (PHMB). A non-healing diabetic infected wound model with emerging metabolomics tools was used to explore the anti-infective and wound healing properties of the resultant multifunctional dressing. Direct bacterial bioburden assessment demonstrated superior antibacterial properties of hydrogels over a commercial dressing. However, wound tissue quality analyses confirmed that sustained PHMB for 21 days resulted in tissue necrosis and disturbed healing. Therefore, a follow-up comparative study investigated the best treatment course for antiseptic application ranging from 7 to 21 days, followed by the oxygenating chitosan-based MACF treatment for the remainder of the 21 days. Bacterial counts, tissue assessments, and lipidomics studies showed that 14 days of application of MACF-PHMB dressings followed by 7 days of MACF dressings provides a promising treatment for managing infected non-healing diabetic skin ulcers.


Assuntos
Antibacterianos , Bandagens , Quitosana , Hidrogéis , Cicatrização , Quitosana/química , Quitosana/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/administração & dosagem , Cicatrização/efeitos dos fármacos , Animais , Biguanidas/química , Biguanidas/farmacologia , Biguanidas/administração & dosagem , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Masculino , Oxigênio/química , Doença Crônica , Fluorocarbonos/química , Fluorocarbonos/farmacologia , Fluorocarbonos/administração & dosagem
11.
Bioconjug Chem ; 24(9): 1515-26, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23909702

RESUMO

In this study we report the successful synthesis of N-(2-mercaptoethyl)-3-(3-methyl-3H-diazirine-3-yl) propanamide (N-MCEP-diazirine), with sulfhydryl and amine photoreactive ends to allow recombinant protein tethering to chitosan films. This regimen allows mimicry of the physiological endeavor of axon pathfinding in the nervous system where neurons rely on cues for guidance during development and regeneration. Our strategy incorporates strong covalent and noncovalent interactions, utilizing N-MCEP-diazirine, maleimide-streptavidin complex, and two custom biotinylated-fusion proteins, nerve growth factor (bNGF), and semaphorin3A (bSema3A). Synthetic yield of N-MCEP-diazirine was 87.3 ± 1.9%. Characteristic absorbance decrease at 348 nm after N-MCEP-diazirine exposure to UV validated the photochemical properties of the diazirine moiety, and the attachment of cross-linker to chitosan films was verified with Fourier transform infrared spectroscopy (FTIR). Fluorescence techniques showed no significant difference in the detection of immobilized proteins compared to absorbing the proteins to films (p < 0.05); however, in vitro outgrowth of dorsal root ganglia (DRG) was more responsive to immobilized bNGF and bSema3A compared to adsorbed bNGF and bSema3A over a 5 day period. Immobilized bNGF significantly increased DRG length over time (p < 0.0001), but adsorbed bNGF did not increase in axon extension from day 1 to day 5 (p = 0.4476). Immobilized bSema3A showed a significant decrease in neurite length (524.42 ± 57.31 µm) at day 5 compared to adsorbed bSema3A (969.13 ± 57.31 µm). These results demonstrate the superiority of our immobilization approach to protein adsorption because biotinylated-fusion proteins maintain their active confirmation and their tethering can be spatially controlled via a UV activated N-MCEP-diazirine cross-linker.


Assuntos
Azirinas/química , Reagentes de Ligações Cruzadas/química , Proteínas Imobilizadas/química , Fator de Crescimento Neural/química , Neuritos/ultraestrutura , Semaforina-3A/química , Animais , Biotinilação , Células Cultivadas , Galinhas , Quitosana/química , Gânglios Espinais/citologia , Proteínas Imobilizadas/metabolismo , Camundongos , Fator de Crescimento Neural/metabolismo , Neuritos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Semaforina-3A/metabolismo
12.
Mater Adv ; 4(5): 1249-1257, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36895585

RESUMO

Having co-evolved with bacteria over hundreds of millions of years, bacteriophage are effective killers of specific bacterial hosts. Therefore, phage therapies for infection are a promising treatment avenue, can provide a solution for antibiotic resistant bacterial infections, and have specified targeting of infectious bacteria while allowing the natural microbiome to survive which systemic antibiotics often wipe out. Many phages have well studied genomes that can be modified to change target, widen target range, or change mode of action of killing bacterial hosts. Phage delivery can also be designed to increase efficacy of treatment, including encapsulation and delivery via biopolymers. Increased research into phage potential for therapies can allow new avenues to develop to treat a larger range of infections.

13.
Cell Mol Bioeng ; 16(1): 41-54, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36660584

RESUMO

Introduction: Syringomyelia (SM) is a debilitating spinal cord disorder in which a cyst, or syrinx, forms in the spinal cord parenchyma due to congenital and acquired causes. Over time syrinxes expand and elongate, which leads to compressing the neural tissues and a mild to severe range of symptoms. In prior omics studies, significant upregulation of betaine and its synthesis enzyme choline dehydrogenase (CHDH) were reported during syrinx formation/expansion in SM injured spinal cords, but the role of betaine regulation in SM etiology remains unclear. Considering betaine's known osmoprotectant role in biological systems, along with antioxidant and methyl donor activities, this study aimed to better understand osmotic contributions of synthesized betaine by CHDH in response to SM injuries in the spinal cord. Methods: A post-traumatic SM (PTSM) rat model and in vitro cellular models using rat astrocytes and HepG2 liver cells were utilized to investigate the role of betaine synthesis by CHDH. Additionally, the osmotic contributions of betaine were evaluated using a combination of experimental as well as simulation approaches. Results: In the PTSM injured spinal cord CHDH expression was observed in cells surrounding syrinxes. We next found that rat astrocytes and HepG2 cells were capable of synthesizing betaine via CHDH under osmotic stress in vitro to maintain osmoregulation. Finally, our experimental and simulation approaches showed that betaine was capable of directly increasing meaningful osmotic pressure. Conclusions: The findings from this study demonstrate new evidence that CHDH activity in the spinal cord provides locally synthesized betaine for osmoregulation in SM pathophysiology. Supplementary Information: The online version of this article contains supplementary material available 10.1007/s12195-022-00749-5.

14.
ACS Biomater Sci Eng ; 8(9): 3842-3855, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960539

RESUMO

Neutrophils are a first line of host defense against infection and utilize a series of oxygen-dependent processes to eliminate pathogens. Research suggests that oxygen availability can improve anti-infective mechanisms by promoting the formation of reactive oxygen species. Also, oxygen can synergistically upregulate the antibacterial properties of certain antibiotics against bacteria by altering their metabolism and causing an increase in the antibiotic uptake of bacteria. Therefore, understanding the effects of oxygen availability, as provided via a biomaterial treatment alone or along with potent antibacterial agents, on neutrophil functions can lead us to the development of new anti-inflammatory and anti-infective approaches. However, the study of neutrophil functions in vitro is often limited by their short life span and nonreproducibility, which suggests the need for cell line-based models as a substitute for primary neutrophils. Here, we took advantage of the differentiated human leukemia-60 cell line (HL-60), as an in vitro neutrophil model, to test the effects of local oxygen and antibacterial delivery by fluorinated methacrylamide chitosan (MACF) hydrogels incorporated with polyhexamethylene biguanide (PHMB) antibacterial agent. Considering the natural modes of neutrophil actions to combat bacteria, we studied the impact of our dual functioning oxygenating-antibacterial platforms on neutrophil phagocytosis and antibacterial properties as well as the formation of neutrophil extracellular traps (NETs) and reactive oxygen species (ROS). Our results demonstrated that supplemental oxygen and antibacterial delivery from MACF-PHMB hydrogel platforms upregulated neutrophil antibacterial properties and ROS production. NET formation by neutrophils upon treatment with MACF and PHMB varied when chemical and biological stimuli were used. Overall, this study presents a model to study immune responses in vitro and lays the foundation for future studies to investigate if similar responses also occur in vivo.


Assuntos
Anti-Infecciosos , Quitosana , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biguanidas , Humanos , Hidrogéis/química , Hidrogéis/metabolismo , Hidrogéis/farmacologia , Neutrófilos/metabolismo , Oxigênio/metabolismo , Oxigênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia
15.
ACS Appl Bio Mater ; 5(5): 2176-2184, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35412793

RESUMO

Stem cells are a vital component of regenerative medicine therapies, however, only a fraction of stem cells delivered to the central nervous system following injury survive the inflammatory environment. Previously, we showed that subcutaneous preconditioning of neural stem cell (NSC) embedded hydrogels for 28 days improved spinal cord injury (SCI) functional outcomes over controls. Here, we investigated the mechanism of subcutaneous preconditioning of NSC-embedded hydrogels, with and without the known neurogenic cue, interferon gamma (IFN-γ), for 3, 14, or 28 days to refine and identify subcutaneous preconditioning conditions by measurement of neurogenic markers and cytokines. Studying the preconditioning mechanism, we found that subcutaneous foreign body response (FBR) associated cytokines infiltrated the scaffold in groups with and without NSCs, with time point effects. A pro-inflammatory environment with upregulated interleukin (IL)-6, IL-10, macrophage inflammatory protein (MIP)-1, MIP-2, IFN-γ-inducible protein 10 (IP-10), tumor necrosis factor-α (TNF-α), and IL-12p70 was observed on day 3. By 14 and 28 days, there was an increase in pro-regenerative cytokines (IL-13, IL-4) along with pro-inflammatory markers IL-1ß, IP-10, and RANTES (regulated on activation, normal T cell expressed, and secreted) potentially part of the mechanism that had an increased functional outcome in SCI. Coinciding with changes in cytokines, the macrophage population increased over time from 3 to 28 days, whereas neutrophils peaked at 3 days with a significant decrease at later time points. Expression of the neuronal marker ßIII tubulin in differentiating NSCs was supported at 3 days in the presence of soluble and immobilized IFN-γ and at 14 days by immobilized IFN-γ only, but it was greatly attenuated in all conditions at 28 days, partially because of dilution via host cell infiltration. We conclude that subcutaneously incubating NSC seeded scaffolds for 3 or 14 days could act as host specific preconditioning through exposure to FBR while retaining ßIII tubulin expression of NSCs to further improve the SCI functional outcome observed with 28 day subcutaneous incubation.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Quimiocina CXCL10 , Citocinas/metabolismo , Humanos , Hidrogéis , Interferon gama/metabolismo , Interleucina-6 , Proteínas Inflamatórias de Macrófagos , Traumatismos da Medula Espinal/terapia , Tubulina (Proteína)
16.
Mol Cancer Res ; 20(7): 1166-1177, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35348758

RESUMO

The tumor microenvironment (TME) promotes proliferation, drug resistance, and invasiveness of cancer cells. Therapeutic targeting of the TME is an attractive strategy to improve outcomes for patients, particularly in aggressive cancers such as triple-negative breast cancer (TNBC) that have a rich stroma and limited targeted therapies. However, lack of preclinical human tumor models for mechanistic understanding of tumor-stromal interactions has been an impediment to identify effective treatments against the TME. To address this need, we developed a three-dimensional organotypic tumor model to study interactions of patient-derived cancer-associated fibroblasts (CAF) with TNBC cells and explore potential therapy targets. We found that CAFs predominantly secreted hepatocyte growth factor (HGF) and activated MET receptor tyrosine kinase in TNBC cells. This tumor-stromal interaction promoted invasiveness, epithelial-to-mesenchymal transition, and activities of multiple oncogenic pathways in TNBC cells. Importantly, we established that TNBC cells become resistant to monotherapy and demonstrated a design-driven approach to select drug combinations that effectively inhibit prometastatic functions of TNBC cells. Our study also showed that HGF from lung fibroblasts promotes colony formation by TNBC cells, suggesting that blocking HGF-MET signaling potentially could target both primary TNBC tumorigenesis and lung metastasis. Overall, we established the utility of our organotypic tumor model to identify and therapeutically target specific mechanisms of tumor-stromal interactions in TNBC toward the goal of developing targeted therapies against the TME. IMPLICATIONS: Leveraging a state-of-the-art organotypic tumor model, we demonstrated that CAFs-mediated HGF-MET signaling drive tumorigenic activities in TNBC and presents a therapeutic target.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Proliferação de Células , Fator de Crescimento de Hepatócito , Humanos , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral
17.
ACS Appl Mater Interfaces ; 14(4): 4899-4913, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35060707

RESUMO

Despite advances in the development of complex culture technologies, the utility, survival, and function of large 3D cell aggregates, or spheroids, are impeded by mass transport limitations. The incorporation of engineered microparticles into these cell aggregates offers a promising approach to increase spheroid integrity through the creation of extracellular spaces to improve mass transport. In this study, we describe the formation of uniform oxygenating fluorinated methacrylamide chitosan (MACF) microparticles via a T-shaped microfluidic device, which when incorporated into spheroids increased extracellular spacing and enhanced oxygen transport via perfluorocarbon substitutions. The addition of MACF microparticles into large liver cell spheroids supported the formation of stable and large spheroids (>500 µm in diameter) made of a heterogeneous population of immortalized human hepatoma (HepG2) and hepatic stellate cells (HSCs) (4 HepG2/1 HSC), especially at a 150:1 ratio of cells to microparticles. Further, as confirmed by the albumin, urea, and CYP3A4 secretion amounts into the culture media, biological functionality was maintained over 10 days due to the incorporation of MACF microparticles as compared to controls without microparticles. Importantly, we demonstrated the utility of fluorinated microparticles in reducing the number of hypoxic cells within the core regions of spheroids, while also promoting the diffusion of other small molecules in and out of these 3D in vitro models.


Assuntos
Acrilamidas/farmacologia , Materiais Biocompatíveis/farmacologia , Quitosana/farmacologia , Oxigênio/metabolismo , Esferoides Celulares/efeitos dos fármacos , Acrilamidas/química , Acrilamidas/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Quitosana/metabolismo , Halogenação , Humanos , Teste de Materiais , Oxigênio/química , Tamanho da Partícula , Esferoides Celulares/metabolismo , Propriedades de Superfície
18.
Biophys Rev (Melville) ; 2(2): 021305, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38505119

RESUMO

Spheroids and organoids are promising models for biomedical applications ranging from human disease modeling to drug discovery. A main goal of these 3D cell-based platforms is to recapitulate important physiological parameters of their in vivo organ counterparts. One way to achieve improved biomimetic architectures and functions is to culture cells at higher density and larger total numbers. However, poor nutrient and waste transport lead to low stability, survival, and functionality over extended periods of time, presenting outstanding challenges in this field. Fortunately, important improvements in culture strategies have enhanced the survival and function of cells within engineered microtissues/organs. Here, we first discuss the challenges of growing large spheroids/organoids with a focus on mass transport limitations, then highlight recent tools and methodologies that are available for producing and sustaining functional 3D in vitro models. This information points toward the fact that there is a critical need for the continued development of novel cell culture strategies that address mass transport in a physiologically relevant human setting to generate long-lasting and large-sized spheroids/organoids.

19.
PLoS One ; 16(11): e0252559, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34762669

RESUMO

Syringomyelia (SM) is a spinal cord disorder in which a cyst (syrinx) filled with fluid forms in the spinal cord post-injury/disease, in patients syrinx symptoms include loss of pain and temperature sensation or locomotion deficit. Currently, there are no small animal models and connected tools to help study the functional impacts of SM. The objective of this study was to determine the detectability of subtle locomotion deficits due to syrinx formation/expansion in post-traumatic syringomyelia (PTSM) rat model using the recently reported method of Gait Analysis Instrumentation, and Technology Optimized for Rodents (GAITOR) with Automated Gait Analysis Through Hues and Areas (AGATHA) technique. First videos of the rats were collected while walking in an arena (using GAITOR) followed by extracting meaningful locomotion information from collected videos using AGATHA protocol. PTSM injured rats demonstrated detectable locomotion deficits in terms of duty factor imbalance, paw placement accuracy, step contact width, stride length, and phase dispersion parameters compared to uninjured rats due to SM. We concluded that this technique could detect mild and subtle locomotion deficits associated with PTSM injury, which also in future work could be used further to monitor locomotion responses after different treatment strategies for SM.


Assuntos
Hiperalgesia/fisiopatologia , Locomoção/fisiologia , Medula Espinal/fisiopatologia , Siringomielia/fisiopatologia , Caminhada/fisiologia , Animais , Modelos Animais de Doenças , Análise da Marcha , Masculino , Medição da Dor , Ratos , Ratos Wistar
20.
Neural Regen Res ; 16(11): 2293-2298, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33818515

RESUMO

Precise assessment of spinal cord cystic lesions is crucial to formulate effective therapeutic strategies, yet histological assessment of the lesion remains the primary method despite numerous studies showing inconsistent results regarding estimation of lesion size via histology. On the other hand, despite numerous advances in micro-computed tomography (micro-CT) imaging and analysis that have allowed precise measurements of lesion size, there is not enough published data on its application to estimate intraspinal lesion size in laboratory animal models. This work attempts to show that micro-CT can be valuable for spinal cord injury research by demonstrating accurate estimation of syrinx size and compares between micro-CT and traditional histological analysis. We used a post-traumatic syringomyelia rat model to compare micro-CT analysis to conventional histological analysis. The study showed that micro-CT can detect lesions within the spinal cord very similar to histology. Importantly, micro-CT appears to provide more accurate estimates of the lesions with more measures (e.g., surface area), can detect compounds within the cord, and can be done with the tissue of interest (spinal cord) intact. In summary, the experimental work presented here provides one of the first investigations of the use of micro-CT for estimating the size of intraparenchymal cysts and detecting materials within the spinal cord. All animal procedures were approved by the University of Akron Institutional Animal Care and Use Committee (IACUC) (protocol # LRE 16-05-09 approved on May 14, 2016).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa