Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Chem Biol ; 31(3): 534-549.e8, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-37816350

RESUMO

Proteomic profiling of protease-generated N termini provides key insights into protease function and specificity. However, current technologies have sequence limitations or require specialized synthetic reagents for N-terminal peptide isolation. Here, we introduce an N terminomics toolbox that combines selective N-terminal biotinylation using 2-pyridinecarboxaldehyde (2PCA) reagents with chemically cleavable linkers to enable efficient enrichment of protein N termini. By incorporating a commercially available alkyne-modified 2PCA in combination with Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), our strategy eliminates the need for chemical synthesis of N-terminal probes. Using these reagents, we developed PICS2 (Proteomic Identification of Cleavage Sites with 2PCA) to profile the specificity of subtilisin/kexin-type proprotein convertases (PCSKs). We also implemented CHOPPER (chemical enrichment of protease substrates with purchasable, elutable reagents) for global sequencing of apoptotic proteolytic cleavage sites. Based on their broad applicability and ease of implementation, PICS2 and CHOPPER are useful tools that will advance our understanding of protease biology.


Assuntos
Peptídeo Hidrolases , Proteômica , Piridinas , Peptídeo Hidrolases/metabolismo , Química Click , Proteólise , Alcinos
2.
Nat Microbiol ; 9(1): 55-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177297

RESUMO

Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family (Sutterella wadsworthensis, Eggerthella lenta and Holdemania filiformis), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme-substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome.


Assuntos
Bactérias , Ecossistema , Humanos , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Respiração
3.
Nat Commun ; 13(1): 6615, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329015

RESUMO

Respiratory failure and mortality from COVID-19 result from virus- and inflammation-induced lung tissue damage. The intestinal microbiome and associated metabolites are implicated in immune responses to respiratory viral infections, however their impact on progression of severe COVID-19 remains unclear. We prospectively enrolled 71 patients with COVID-19 associated critical illness, collected fecal specimens within 3 days of medical intensive care unit admission, defined microbiome compositions by shotgun metagenomic sequencing, and quantified microbiota-derived metabolites (NCT #04552834). Of the 71 patients, 39 survived and 32 died. Mortality was associated with increased representation of Proteobacteria in the fecal microbiota and decreased concentrations of fecal secondary bile acids and desaminotyrosine (DAT). A microbiome metabolic profile (MMP) that accounts for fecal secondary bile acids and desaminotyrosine concentrations was independently associated with progression of respiratory failure leading to mechanical ventilation. Our findings demonstrate that fecal microbiota composition and microbiota-derived metabolite concentrations can predict the trajectory of respiratory function and death in patients with severe SARS-Cov-2 infection and suggest that the gut-lung axis plays an important role in the recovery from COVID-19.


Assuntos
COVID-19 , Pneumonia , Insuficiência Respiratória , Humanos , SARS-CoV-2 , Ácidos e Sais Biliares , Imunidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa