Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(72): e202302301, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740670

RESUMO

During the investigation of the binary system Be-Ru two new phases - Be7 Ru4 and Be12 Ru7 - with similar compositions (63.6 at. % Be and 63.2 at. % Be, respectively), are discovered. They both represent new structural prototypes. The phases are located between Be2 Ru (Fe2 P-type structure) and Be3 Ru2 (U3 Si2 -type structure) in the phase diagram. This explains why their crystal structures, solved and refined from single crystal X-ray diffraction data, are described as 2D intergrowth of Fe2 P and U3 Si2 motives. The calculated electronic density of stats (DOS) reveals pronounced minima in the vicinity of the Fermi level for both compounds. Position-space analysis of chemical bonding exhibits the formation of three- and four-atomic polar bonds, involving both, Ru and Be, atoms, and a strong charge transfer from Be to the more electronegative Ru.

2.
Chemistry ; 29(33): e202300578, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-36916324

RESUMO

The structural features of the hexagonal layered crystal structure of Be2 Ru (a=5.7508(3) Å, c=3.0044(2) Å, space group P 6 ‾ ${\bar{6}}$ 2m) were investigated by single crystal X-ray diffraction and transmission electron microscopy (TEM). The residual electron density and high-resolution TEM images show that the real structure can be described as an intergrowth of the main hexagonal matrix of the Fe2 P type with minor orthorhombic inclusions of its stacking variants. Such atomic arrangement is stabilized by the charge transfer from Be to Ru and by a system of polar three- and four-atomic bonds involving both components. The calculated electronic density of states (DOS) of Be2 Ru revealed, contrarily to typical intermetallic compounds, a pseudo gap (dip) in the vicinity of the Fermi level. The temperature dependence of the electrical resistivity of Be2 Ru shows metal behaviour in agreement with the non-zero DOS at the Fermi level.


Assuntos
Eletricidade , Cristalografia por Raios X , Microscopia Eletrônica de Transmissão , Temperatura
3.
Proc Natl Acad Sci U S A ; 117(48): 30220-30227, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33203673

RESUMO

Using inelastic X-ray scattering beyond the dipole limit and hard X-ray photoelectron spectroscopy we establish the dual nature of the U [Formula: see text] electrons in U[Formula: see text] (M = Pd, Ni, Ru, Fe), regardless of their degree of delocalization. We have observed that the compounds have in common a local atomic-like state that is well described by the U [Formula: see text] configuration with the [Formula: see text] and [Formula: see text] quasi-doublet symmetry. The amount of the U 5[Formula: see text] configuration, however, varies considerably across the U[Formula: see text] series, indicating an increase of U 5f itineracy in going from M = Pd to Ni to Ru and to the Fe compound. The identified electronic states explain the formation of the very large ordered magnetic moments in [Formula: see text] and [Formula: see text], the availability of orbital degrees of freedom needed for the hidden order in [Formula: see text] to occur, as well as the appearance of Pauli paramagnetism in [Formula: see text] A unified and systematic picture of the U[Formula: see text] compounds may now be drawn, thereby providing suggestions for additional experiments to induce hidden order and/or superconductivity in U compounds with the tetragonal body-centered [Formula: see text] structure.

4.
Inorg Chem ; 61(40): 16148-16155, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36166747

RESUMO

Mg29-xPt4+y represents the family of complex intermetallic compounds (complex metallic alloys, CMAs). It crystallizes in the cubic non-centrosymmetric space group F4̅3m with a = 20.1068(2) Šand around 400 atoms in a predominantly ordered arrangement. The local disorder around the unit cell origin is experimentally resolved by single-crystal X-ray diffraction in combination with atomic-resolution transmission electron microscopy (TEM, high-angle dark-field scanning TEM) studies. The quantum theory of atoms in molecules-based analysis of atomic charges shows that the unusual mixed Mg/Pt site occupation around the origin results from local charge equilibration in this region of the crystal structure. Chemical bonding analysis reveals for Mg29-xPt4+y─rather unexpected for a crystal structure of this size─space-separated regions of hetero- and homoatomic bonds involving three to six partners (bonding inhomogeneity). Pt-containing 11- and 13-atomic units formed by heteroatomic 3a-, 4a-, and 5a-bonds are condensed via edges and faces to large super-tetrahedrons, which are interlinked by Mg-only 6a-bonds. Spatial separation of the regions with different bonding features is the key difference between the title compound and other CMAs, which are characterized by a predominantly homogeneous distribution of heteroatomic bonds.

5.
Inorg Chem ; 60(17): 13681-13690, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34428036

RESUMO

The binary phase Mg3Pt2 was prepared by direct reaction between the elements or by spark-plasma synthesis starting with MgH2 and PtCl2. The compound crystallizes in the monoclinic space group C2/c with a = 7.2096(3) Å, b = 7.1912(4) Å, c = 6.8977(3) Å, and ß = 106.072(3)° and is isotypic to Eu3Ga2. Analysis of the electron density within the quantum theory of atoms in molecules shows a significant charge transfer from Mg to Pt in agreement with the electronegativity difference. Further study of the chemical bonding with the electron localizability approach reveals the formation of Pt chains stabilized by a complex system of multicenter interactions involving Mg and Pt species. The metallic character of Mg3Pt2 is confirmed by electronic structure calculations and physical measurements.

6.
Proc Natl Acad Sci U S A ; 115(30): 7706-7710, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29987038

RESUMO

Among intermetallic compounds, ternary phases with the simple stoichiometric ratio 1:1:1 form one of the largest families. More than 15 structural patterns have been observed for several hundred compounds constituting this group. This, on first glance unexpected, finding is a consequence of the complex mechanism of chemical bonding in intermetallic structures, allowing for large diversity. Their formation process can be understood based on a hierarchy of energy scales: The main share is contributed by covalent and ionic interactions in accordance with the electronic needs of the participating elements. However, smaller additional atomic interactions may still tip the scales. Here, we demonstrate that the local spin polarization of paramagnetic manganese in the new compound MnSiPt rules the adopted TiNiSi-type crystal structure. Combining a thorough experimental characterization with a theoretical analysis of the energy landscape and the chemical bonding of MnSiPt, we show that the paramagnetism of the Mn atoms suppresses the formation of Mn-Mn bonds, deciding between competing crystal structures.

7.
Chemistry ; 26(23): 5245-5256, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31943404

RESUMO

The homogeneity range of ternary iron indium thiospinel at 873 K was investigated. A detailed study was focused on two distinct series (y=z): 1) a previously reported charge-balanced (In0.67+0.33y □0.33-0.33y )tetr [In2-z Fez ]oct S4 (A1-series; □ stands for vacancy; the abbreviations "tetr" and "oct" indicate atoms occupying tetrahedral 8a and octahedral 16d sites, respectively) and 2) a new charge-unbalanced (In0.67+y □0.33-y )tetr [In2-z Fez ]oct S4 (A2-series). Fe atoms were confirmed to exclusively occupy an octahedral position in both series. An unusual reduction of the unit cell parameter with increasing Fe content is explained by differences in the ionic radii between Fe and In, as well as by an additional electrostatic attraction originating from charge imbalance (latter only in A2-series). The studied compound is an n-type semiconductor, and its charge carrier concentration increases or decreases for larger Fe content within the A1- and A2-series, respectively. The thermal conductivity κtot is significantly reduced upon increasing vacancy concentration, whereas the change of power factor is insufficient to drastically improve the thermoelectric figure of merit.

8.
Inorg Chem ; 59(19): 14280-14289, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32946694

RESUMO

Hf2B2-2δIr5+δ crystallizes with a new type of structure: space group Pbam, a = 5.6300(3) Å, b = 11.2599(5) Å, and c = 3.8328(2) Å. Nearly 5% of the boron pairs are randomly replaced by single iridium atoms (Ir5+δB2-2δ). From an analysis of the chemical bonding, the crystal structure can be understood as a three-dimensional framework stabilized by covalent two-atom B-B and Ir-Ir as well as three-atom Ir-Ir-B and Ir-Ir-Ir interactions. The hafnium atoms center 14-atom cavities and transfer a significant amount of charge to the polyanionic boron-iridium framework. This refractory boride displays moderate hardness and is a Pauli paramagnet with metallic electrical resistivity, Seebeck coefficient, and thermal conductivity. The metallic character of this system is also confirmed by electronic structure calculations revealing 5.8 states eV-1 fu-1 at the Fermi level. Zr2B2-2δIr5+δ is found to be isotypic with Hf2B2-2δIr5+δ, and both form a continuous solid solution.

9.
Acc Chem Res ; 51(2): 214-222, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29313671

RESUMO

Materials with the crystal structure of γ-brass type (Cu5Zn8 type) are typical representatives of intermetallic compounds. From the electronic point of view, they are often interpreted using the valence electron concentration approach of Hume-Rothery, developed previously for transition metals. The γ-brass-type phases of the main-group elements are rather rare. The intermetallic compound Be21Pt5, a new member of this family, was synthesized, and its crystal structure, chemical bonding, and physical properties were characterized. Be21Pt5 crystallizes in the cubic space group F4̅3m with lattice parameter a = 15.90417(3) Å and 416 atoms per unit cell. From the crystallographic point of view, the binary substance represents a special family of intermetallic compounds called complex metallic alloys (CMA). The crystal structure was solved by a combination of synchrotron and neutron powder diffraction data. Besides the large difference in the scattering power of the components, the structure solution was hampered by the systematic presence of very weak reflections mimicking wrong symmetry. The structural motif of Be21Pt5 is described as a 2 × 2 × 2 superstructure of the γ-brass structure (Cu5Zn8 type) or 6 × 6 × 6 superstructure of the simple bcc structural pattern with distinct distribution of defects. The main building elements of the crystal structure are four types of nested polyhedral units (clusters) with the compositions Be22Pt4 and Be20Pt6. Each cluster contains four shells (4 + 4 + 6 + 12 atoms). Clusters with different compositions reveal various occupation of the shells by platinum and beryllium. Polyhedral nested units with the same composition differ by the distance of the shell atoms to the cluster center. Analysis of chemical bonding was made applying the electron localizability approach, a quantum chemical technique operating in real space that is proven to be especially efficient for intermetallic compounds. Evaluations of the calculated electron density and electron localizability indicator (ELI-D) revealed multicenter bonding, being in accordance with the low valence electron count per atom in Be21Pt5. A new type of atomic interactions in intermetallic compounds, cluster bonds involving 8 or even 14 atoms, is found in the clusters with shorter distances between the shell atoms and the cluster centers. In the remaining clusters, four- and five-center bonds characterize the atomic interactions. Multicluster interactions within the polyhedral nested units and three-center polar intercluster bonds result in a three-dimensional framework resembling the structural pattern of NaCl. Be21Pt5 is a diamagnetic metal and one of rather rare CMA compounds revealing superconductivity (Tc = 2.06 K).

10.
Angew Chem Int Ed Engl ; 58(44): 15928-15933, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31483920

RESUMO

Semiconducting substances form one of the most important families of functional materials. However, semiconductors containing only metals are very rare. The chemical mechanisms behind their ground-state properties are only partially understood. Our investigations have rather unexpectedly revealed the semiconducting behaviour (band gap of 190 meV) for the intermetallic compound Be5 Pt formed at a very low valence-electron count. Quantum-chemical analysis shows strong charge transfer from Be to Pt and reveals a three-dimensional entity of vertex-condensed empty Be4 tetrahedrons with multi-atomic cluster bonds interpenetrated by the framework of Pt-filled vertex-condensed Be4 tetrahedrons with two-atomic polar Be-Pt bonds. The combination of strong Coulomb interactions with relativistic effects results in a band gap.

11.
Angew Chem Int Ed Engl ; 57(21): 6130-6135, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29577533

RESUMO

Boron carbide, the simple chemical combination of boron and carbon, is one of the best-known binary ceramic materials. Despite that, a coherent description of its crystal structure and physical properties resembles one of the most challenging problems in materials science. By combining ab initio computational studies, precise crystal structure determination from diffraction experiments, and state-of-the-art high-resolution transmission electron microscopy imaging, this concerted investigation reveals hitherto unknown local structure modifications together with the known structural alterations. The mixture of different local atomic arrangements within the real crystal structure reduces the electron deficiency of the pristine structure CBC+B12 , answering the question about electron precise character of boron carbide and introducing new electronic states within the band gap, which allow a better understanding of physical properties.

12.
Chemistry ; 21(46): 16532-40, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26418894

RESUMO

Two ternary borides MNi9 B8 (M=Al, Ga) were synthesized by thermal treatment of mixtures of the elements. Single-crystal X-ray diffraction data reveal AlNi9 B8 and GaNi9 B8 crystallizing in a new type of structure within the space group Cmcm and the lattice parameters a=7.0896(3) Å, b=8.1181(3) Å, c=10.6497(4) Šand a=7.0897(5) Å, b=8.1579(4) Å, c=10.6648(7) Å, respectively. The boron atoms build up two-dimensional layers, which consist of puckered [B16 ] rings with two tailing B atoms, whereas the M atoms reside in distorted vertices-condensed [Ni12 ] icosahedra, which form a three-dimensional framework interpenetrated by boron porphyrin-reminiscent layers. An unusual local arrangement resembling a giant metallo-porphyrin entity is formed by the [B16 ] rings, which, due to their large annular size of approximately 8 Å, chelate four of the twelve icosahedral Ni atoms. An analysis of the chemical bonding by means of the electron localizability approach reveals strong covalent B-B interactions and weak Ni-Ni interactions. Multi-center dative B-Ni interaction occurs between the Al-Ni framework and the boron layers. In agreement with the chemical bonding analysis and band structure calculations, AlNi9 B8 is a Pauli-paramagnetic metal.

13.
Inorg Chem ; 54(13): 6338-46, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26102602

RESUMO

ThPt2 crystallizes with unique type of structure (space group I4/mmm, a = 4.1565(1) Å, c = 14.3663(7) Å, Pearson symbol tI12), which belongs to the group of the close packed tetragonal structures. An analysis of the chemical bonding by the electron localizability approach reveals the formation of two-dimensional layered platinum anionic substructures interlinked by strongly polar bonds to Th. Measurements of magnetic susceptibility, electrical resistivity, and specific heat show ThPt2 to be diamagnetic with metallic type of electrical conductivity in good agreement with the calculated electronic structure (N(EF) = 0.9 states eV(-1) f.u.(-1)).

14.
Phys Chem Chem Phys ; 16(48): 27119-33, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25388502

RESUMO

We report on the inelastic response of AV2Al20 (with A = Sc, La and Ce) probed by high-resolution inelastic neutron scattering experiments. Intense signals associated with the dynamics of Sc, La and Ce are identified in the low-energy range at 6-14 meV in ScV2Al20 and at 8-16 meV in LaV2Al20 and CeV2Al20. Their response to temperature changes between 2 and 300 K reveals a very weak softening of the modes upon heating in LaV2Al20 and CeV2Al20 and a distinguished blue shift by about 2 meV in ScV2Al20. By means of density functional theory (DFT) and lattice dynamics calculations (LDC) we show that the unusual anharmonicity of the Sc-dominated modes is due to the local potential of Sc featured by a strong quartic term. The vibrational dynamics of ScV2Al20 as well as of LaV2Al20 and CeV2Al20 is reproduced by a set of eigenmodes. To screen the validity of the DFT and LDC results they are confronted with data from X-ray diffraction measurements. The effect of the strong phonon renormalization in ScV2Al20 on thermodynamic observables is computed on grounds of the LDC derived inelastic response. To set the data in a general context of AV2Al20 compounds and their physical properties we report in addition computer and experimental results of the binary V2Al20 compound.

15.
ACS Org Inorg Au ; 3(3): 143-150, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37303500

RESUMO

Amalgams have played an important role in fundamental and applied solid-state chemistry and physics because of the diversity of crystallographic features and properties that they have to offer. Moreover, their peculiar chemical properties can sometimes give rise to unconventional superconducting or magnetic ground states. In the current work, we present an in-depth analysis of single crystals of YHg3 and LuHg3 (Mg3Cd structure type, space group P63/mmc). Both compounds show superconductivity below Tc = 1 ± 0.1 K (YHg3) and Tc = 1.2 ± 0.1 K (LuHg3). Given the high air-sensitivity and toxicity of these compounds, this study was only possible using a number of dedicated experimental techniques.

16.
Inorg Chem ; 51(14): 7472-83, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22725845

RESUMO

The ternary boron compounds TM(7)TM'(6)B(8) (TM = Ta, Nb; TM' = Ru, Rh, Ir) were prepared by high-temperature thermal treatment of mixtures of the elements. An analysis of the chemical bonding by the electron density/electron localizability approach reveals formation of covalently bonded polyanions [B(6)] and [TM'(6)B(2)]. The cationic part of the structure contains separated TM cations. In agreement with the chemical bonding analysis and band structure calculations, all TM(7)TM'(6)B(8) compounds are metallic Pauli-paramagnets (TM' = Ru, Rh) or diamagnets (TM' = Ir).

17.
Dalton Trans ; 51(26): 10036-10046, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35723520

RESUMO

The structural and physical properties of Y5Ir6Sn18 grown from Sn-flux as large single crystals are studied. Y5Ir6Sn18 crystallizes with a unique structure [space group Fm3̄m, a = 13.7706(1) Å], which is characterized by a strong disorder. A transmission electron microscopy (TEM) study indicated that the structural model of Y5Ir6Sn18 obtained from X-ray diffraction methods is an average description of a complex intergrowth of domains with different structural arrangements. The studied stannide is a type-II superconductor with a critical temperature Tc = 2.1 K, a rather weak electron-phonon coupling and conventional s-wave BCS-like mechanisms. Performed theoretical electronic band structure calculations indicated the inconsistency of an idealized structural model earlier reported for Y5Ir6Sn18.

18.
Materials (Basel) ; 15(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454433

RESUMO

We carried out electrical resistivity and X-ray diffraction (XRD) studies on the filled skutterudite superconductors LaPt4Ge12 and PrPt4Ge12 under hydrostatic pressure. The superconducting transition temperature Tc is linearly suppressed upon increasing pressure, though the effect of pressure on Tc is rather weak. From the analysis of the XRD data, we obtain bulk moduli of B=106 GPa and B=83 GPa for LaPt4Ge12 and PrPt4Ge12, respectively. The knowledge of the bulk modulus allows us to compare the dependence of Tc on the unit-cell volume from our pressure study directly with that found in the substitution series La1-xPrxPt4Ge12. We find that application of hydrostatic pressure can be characterized mainly as a volume effect in LaPt4Ge12 and PrPt4Ge12, while substitution of Pr for La in La1-xPrxPt4Ge12 yields features going beyond a simple picture.

19.
Dalton Trans ; 51(12): 4734-4748, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35244111

RESUMO

Polymorphism is observed in the Y3+xRh4Ge13-x series. The decrease of Y-content leads to the transformation of the primitive cubic Y3.6Rh4Ge12.4 [x = 0.6, space group Pm3̄n, a = 8.96095(9) Å], revealing a strongly disordered structure of the Yb3Rh4Sn13 Remeika prototype, into a body-centred cubic structure [La3Rh4Sn13 structure type, space group I4132, a = 17.90876(6) Å] for x = 0.4 and further into a tetragonal arrangement (Lu3Ir4Ge13 structure type, space group I41/amd, a = 17.86453(4) Å, a = 17.91076(6) Å) for the stoichiometric (i.e. x = 0) Y3Rh4Ge13. Analogous symmetry lowering is found within the Y3+xIr4Ge13-x series, where the compound with Y-content x = 0.6 is crystallizing with La3Rh4Sn13 structure type [a = 17.90833(8) Å] and the stoichiometric Y3Ir4Ge13 is isostructural with the Rh-analogue [a = 17.89411(9) Å, a = 17.9353(1) Å]. The structural relationships of these derivatives of the Remeika prototype are discussed. Compounds from the Y3+xRh4Ge13-x series are found to be weakly-coupled BCS-like superconductors with Tc = 1.25, 0.43 and 0.6, for x = 0.6, 0.4 and 0, respectively. They also reveal low thermal conductivity (<1.5 W K-1 m-1 in the temperature range 1.8-350 K) and small Seebeck coefficients. The latter are common for metallic systems. Y3Rh4Ge13 undergoes a first-order phase transition at Tf = 177 K, with signatures compatible to a charge density wave scenario. The electronic structure calculations confirm the instability of the idealized Yb3Rh4Sn13-like structural arrangements for Y3Rh4Ge13 and Y3Ir4Ge13.

20.
ChemistryOpen ; 11(6): e202200118, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35726898

RESUMO

The new phase Be3 Ru crystallizes with TiCu3 -type structure (space group Pmmn (59), a=3.7062(1) Å, b=4.5353(1) Å, c=4.4170(1) Å), a coloring variant of the hexagonal closest packing (hcp) of spheres. The electronic structure revealed that Be3 Ru has a pseudo-gap close to the Fermi level. A strong charge transfer from Be to Ru was observed from the analysis of electron density within the Quantum Theory of Atoms in Molecules (QTAIM) framework and polar three- and four-atomic Be-Ru bonds were observed from the ELI-D (electron localizability indicator) analysis. This situation is very similar to the recently investigated Be5 Pt and Be21 Pt5 compounds. The unusual crystal chemical feature of Be3 Ru is that different charged species belong to the same closest packing, contrary to typical inorganic compounds, where the cationic components are located in the voids of the closest packing formed by anions. Be3 Ru is a diamagnet displaying metallic electrical resistivity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa