Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Evol Dev ; 16(6): 323-38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25346055

RESUMO

With the rapid increase of the quantity of molecular data, many animals joined the ranks of the so-called 'emerging models' of Evo-Devo. One of the necessary steps in converting an emerging model into an established one is gaining comprehensive knowledge of its normal embryonic development. The marine colonial hydrozoan Hydractinia echinata - an excellent model for research on stem cells, metamorphosis, and allorecognition - has been studied for decades. Yet knowledge of its embryonic development remains fragmentary and incomplete. Here we provide a detailed account of H. echinata embryonic development using in vivo observations, histology, immunohistochemistry, and electron microscopy. Furthermore, we propose a model describing the cellular basis of the morphogenetic movements occurring during development and also reveal a functional link between canonical Wnt signaling and regional differences in the morphology of the embryo. Hydractinia embryogenesis is an example of the diversity and plasticity of hydrozoan development where multiple routes lead to the same result - the formation of a normal planula larva.


Assuntos
Hidrozoários/crescimento & desenvolvimento , Animais , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Fertilização , Gastrulação , Hidrozoários/citologia , Oócitos/crescimento & desenvolvimento , Células-Tronco/citologia
2.
Int J Dev Biol ; 50(1): 63-70, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16323079

RESUMO

Apoptotic cell death plays an important role in many developmental pathways in multicellular animals. Here, we show that metamorphosis in the basal invertebrate Hydractinia echinata (Cnidaria) depends on the activity of caspases, the central enzymes in apoptosis. Caspases are activated during metamorphosis and this activity can be measured with caspase-3 specific fluorogenic substrates. In affinity labelling experiments 23/25 kDa bands were obtained, which represented active caspase. Specific inhibition of caspase activity with caspase-3 inhibitors abolished metamorphosis completely, reversibly and in a dose-dependent manner. This suggests that caspase activity is indispensable for metamorphosis in Hydractinia echinata.


Assuntos
Caspases/fisiologia , Hidrozoários/enzimologia , Hidrozoários/crescimento & desenvolvimento , Metamorfose Biológica/fisiologia , Animais , Apoptose/fisiologia , Caspase 3 , Inibidores de Caspase , Caspases/biossíntese , Indução Enzimática/fisiologia , Hidrozoários/citologia , Larva/citologia , Larva/enzimologia
3.
Zoology (Jena) ; 114(1): 11-22, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21247747

RESUMO

Apoptosis is a highly conserved mechanism of cell deletion that destroys redundant, dysfunctional, damaged, and diseased cells. Furthermore, apoptotic cell death is essential during the development of multicellular organisms. However, there are only a few examples where the occurrence of apoptosis has been shown to be a direct prerequisite for developmental processes. As described previously by our group, the degradation of larval tissue during the first half of the metamorphosis of Hydractinia echinata involves extensive cell death. A large number of cells are removed, and we observed several cellular features of apoptotic cell death in the dying tissue, e.g., nucleosomal DNA fragmentation and nuclear condensation. Furthermore, we showed that metamorphosis in the basal cnidarian H. echinata depends on the activity of caspases, the central enzymes of apoptosis. In the present study, we build on these previous investigations of apoptosis in H. echinata by characterising a caspase-3 sequence in this species and placing it in an evolutionary context by performing phylogenetic analyses. Furthermore, we report the successful knockdown of a caspase by RNAi and show that apoptosis plays a role as an instructive mechanism in the metamorphosis of H. echinata.


Assuntos
Apoptose/fisiologia , Hidrozoários/crescimento & desenvolvimento , Metamorfose Biológica , Sequência de Aminoácidos , Animais , Caspases/genética , Caspases/metabolismo , Sequência Conservada , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Hidrozoários/enzimologia , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
4.
Invert Neurosci ; 10(2): 77-91, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21104287

RESUMO

In planula larvae of the invertebrate Hydractinia echinata (Cnidaria, Hydrozoa), peptides of the GLWamide and the RFamide families are expressed in distinct subpopulations of neurons, distributed in a typical spatial pattern through the larval body. However, in the adult polyp GLWamide or RFamide-expressing cells are located at body parts that do not correspond to the prior larval regions. Since we had shown previously that during metamorphosis a large number of cells are removed by programmed cell death (PCD), we aimed to analyze whether cells of the neuropeptide-expressing larval nerve net are among those sacrificed. By immunohistochemical staining and in situ hybridization, we labeled GLWamide- and RFamide-expressing cells. Double staining of neuropeptides and degraded DNA (TUNEL analysis) identified some neurosensory cells as being apoptotic. Derangement of the cytoplasm and rapid destruction of neuropeptide precursor RNA indicated complete death of these particular sensory cells in the course of metamorphosis. Additionally, a small group of RFamide-positive sensory cells in the developing mouth region of the primary polyp could be shown to emerge by proliferation. Our results support the idea that during metamorphosis, specific parts of the larval neuronal network are subject to neurodegeneration and therefore not used for construction of the adult nerve net. Most neuronal cells of the primary polyp arise by de novo differentiation of stem cells commited to neural differentiation in embryogenesis. At least some nerve cells derive from proliferation of progenitor cells. Clarification of how the nerve net of these basal eumetazoans degenerates may add information to the understanding of neurodegeneration by apoptosis as a whole in the animal kingdom.


Assuntos
Apoptose/fisiologia , Hydra/fisiologia , Larva/fisiologia , Metamorfose Biológica/fisiologia , Neurônios/fisiologia , Animais , Contagem de Células , Imuno-Histoquímica , Hibridização In Situ , Neuropeptídeos/metabolismo
5.
Int J Dev Biol ; 54(5): 795-802, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20336614

RESUMO

A novel wingless gene was isolated from the marine colonial hydroid Hydractinia echinata. Alignments and Bayesian inference analysis clearly assign the gene to the Wnt5A group. In line with data found for the brachyury ortholog of Hydractinia, He-wnt5A is expressed during metamorphosis in the posterior tip of the spindle-shaped planula larva, suggesting that the tip functions as a putative organizer during metamorphosis. Additionally, the outermost cells of the posterior tip are omitted from apoptosis during metamorphosis. In order to investigate this putative organizer function, we transplanted the posterior tip of metamorphosing animals into non-induced larvae and into primary polyps 24 h and 48 h of age. In larvae, the tip induced formation of a secondary axis. In polyps the building of ectopic head structures was induced. Based on our data on axis formation, on gene expression similar to the organizers of other species, and the absence of regular apoptosis, we conclude that the posterior tip of the Hydractinia larva has organizing activity during metamorphosis.


Assuntos
Padronização Corporal/fisiologia , Hidrozoários/fisiologia , Metamorfose Biológica/fisiologia , Proteínas Wnt/fisiologia , Sequência de Aminoácidos , Animais , Apoptose/genética , Apoptose/fisiologia , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Hidrozoários/genética , Hidrozoários/crescimento & desenvolvimento , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Larva/genética , Larva/fisiologia , Metamorfose Biológica/genética , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Transplante de Tecidos/métodos , Proteínas Wnt/classificação , Proteínas Wnt/genética
6.
Dev Genes Evol ; 217(5): 385-94, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17394014

RESUMO

Many marine invertebrates reproduce through a larval stage. The settlement and metamorphosis of most of the species are synchronised and induced by environmental organisms, mainly bacteria. The hydrozoan Hydractinia echinata has become a model organism for metamorphosis of marine invertebrates. In this species, bacteria, e.g. Pseudoalteromonas espejiana, are the natural inducers of metamorphosis. Like in other species of marine invertebrates, metamorphosis can be induced artificially by monovalent cations, e.g. Cs+. In this study, we present systematic data that metamorphosis--with both inducing compounds, the natural one from bacteria and the artificial one Cs+--are indeed similar with respect to (a) the morphological progression, (b) the localisation of the primary induction signal in the larva, (c) the pattern of apoptotic cells occurring during the initial 10 h of metamorphosis and (d) the disappearance of RFamide-dependent immunocytochemical signals in sensory neurons during this process. However, a difference occurs during the development of the anterior end, insofar as apoptotic cells and settlement appear earlier in planulae induced with bacteria. Thus, basically, Cs+ may be used as an artificial inducer, mimicking the natural process. However, differences in the appearance of apoptotic cells and in settlement raise the question of how enormous developmental plasticity in hydrozoans actually can be, and how this is related to the absence of malignant devolution in hydrozoans.


Assuntos
Hidrozoários/crescimento & desenvolvimento , Metamorfose Biológica/fisiologia , Animais , Apoptose/efeitos dos fármacos , Césio/farmacologia , Cloretos/farmacologia , Hidrozoários/efeitos dos fármacos , Larva/citologia , Larva/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , Metamorfose Biológica/efeitos dos fármacos , Neurônios Aferentes/citologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Neuropeptídeos/metabolismo , Pseudoalteromonas/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Rouxs Arch Dev Biol ; 203(7-8): 422-428, 1994 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28305948

RESUMO

A wealth of information has suggested the involvement of protein kinase C (PKC) in metamorphosis of Hydractinia echinata and in pattern formation of Hydra magnipapillata. We have identified a Ca2+- and phospholipid-dependent kinase activity in extracts of both species. The enzyme was characterized as being similar to mammalian PKC by ion exchange chromatography. Gel filtration experiments revealed a molecular weight of about 70 kD. In phosphorylation assays of endogenous Hydractinia proteins, a protein with a molecular weight of 22.5 kD was found to be phoshorylated upon addition of phosphatidylserine. Bacterial induction of metamorphosis of Hydractinia echinata caused an increase in endogenous diacylglycerol, the physiological activator of PKC, suggesting that the bacterial inducer acts by activating receptor-regulated phospholipid metabolism. Exogenous diacylglycerol leads to membrane translocation of PKC, indicative of an activation. On the basis of our results and those of Freeman and Ridgway (1990) a model for the biochemical events during metamorphosis is presented.

8.
Rouxs Arch Dev Biol ; 199(2): 107-113, 1990 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28305726

RESUMO

Metamorphosis of planula larvae involves an activation of morphogenetically quiescent cells. The present work extends a previous study [Leitz T and Müller WA (1987) Dev Biol 121:82-89] on the participation of the phosphatidylinositol/diacylglycerol/protein kinase C system. Metamorphosis is stereospecifically induced by diacylglycerols, 1,2,-sn-dioctanoylglycerol (diC8) being by far the most effective substance. K-252a and sphingosine, inhibitors of mammalian protein kinases C, profoundly inhibited metamorphosis. Phorbolester-binding studies and the corresponding Scatchard plots revealed a specific and saturable binding of [3H]phorbol 12,13-dibutyrate to a single site of particulate fractions ofHydractinia with a specific binding affinityK d = 50 nM. K+ ionophores stimulated Cs+ - but inhibited diC8-induced metamorphoses, K+-channel blockers enhanced the inducing action of Cs+ or diC8. On the basis of these data and observations of others we propose that the activation ofHydractinia larvae takes place in some cells at the anterior end as a result of activation of a kinase-C-like enzyme, which directly or indirectly leads to the closure of K+ channels. Closure of these channels then causes depolarisation and, thus, release of an internal signal. This hypothesis unifies notions about the role of K+ channels and of the phosphatidylinositol system in initiation of metamorphosis inHydractinia.

9.
Rouxs Arch Dev Biol ; 200(5): 249-255, 1991 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28305794

RESUMO

Whilst the significance of the phosphoinositide cycle in the activation of developmental events by extra-cellular signals is well established, the involvement of the phosphatidylcholine (PC) cycle is a matter just emerging. In the present study, the metabolism of phosphatidylcholine in early metamorphosis of Hydractinia echinata (Coelenterata; Hydrozoa) was investigated by incubation of planula larvae with 3H-choline, extraction of the metabolites and isolation of the metabolites by thin-layer chromatography (TLC). Phosphatidylcholine (PC), lysophosphatidylcholine (LPC), acetylcholine and glycerophosphocholine were the labelled metabolites. Induction of metamorphosis did not stimulate an increased incorporation of choline into PC. In larvae preincubated with 3H-choline to a steady state level of incorporation, a significant transient elevation of the radioactive label in LPC was observed 90 min after addition of metamorphosis stimulating agents. LPC probably derived from PC by the action of a phospholipase A2 (PLA2). LPCs from bovine and soybean origin as well as isolated larval LPC did not influence metamorphosis. PLA2 from bee venom promoted Cs+-induced metamorphosis but did not influence phorbol ester-induced metamorphosis. The data suggest that a PLA2 is activated during metamorphosis. This PLA2 activation does not occur in those putative receptor cells which receive the primary external inducing stimulus but in the many larval cells which resume proliferation or differentiation in response to a second, internally propagated signal.

10.
Rouxs Arch Dev Biol ; 204(4): 276-279, 1995 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28306123

RESUMO

A novel biologically active peptide (metamorphosin A, MMA, pEQPGLW.NH2) has recently been described. It was isolated from Anthopleura elegantissima and triggers metamorphosis in Hydractinia echinata. Antibodies directed against the C-terminal part of the molecule immunohistochemically stain neurosensory cells and processes in the anterior part of larvae of H. echinata. We assume that in metamorphosis MMA (or a closely related LW-amide) is an internal signal transmitted from the anterior to the posterior body parts. Immunoreactivity is also found in ectodermal nerve processes - but not cell bodies - in the tentacles and in the basal disk of the foot of Hydra magnipapillata. This is, to our knowledge, the first report of LW-amide(s) as (a) neuropeptide(s).

11.
Rouxs Arch Dev Biol ; 199(6): 370-372, 1991 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28305441

RESUMO

A metamorphosis-inducing factor was isolated from medium conditioned by either metamorphosing larvae or 3-day postmetamorphic primary polyps. The factor has a molecular weight ≥ 8 kDa and is heatlabile. It does not induce metamorphosis of isolated posterior fragments and is therefore not identical to the internal signal described by Schwoerer-Böhning et al. (1990). The biological significance of the substance is currently unclear, therefore its inducing activity may be a side effect.

12.
Rouxs Arch Dev Biol ; 205(5-6): 232-242, 1996 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28306026

RESUMO

Metamorphosin A (MMA) isolated from the anthozoan Anthopleura elegantissima has recently been shown to interfere with developmental control in the colonial hydroid Hydractinia echinata. In order to identify the functional homologue in this species we have cloned cDNAs of the precursor protein from Hydractinia and, for comparison, precursor sequences from two further anthozoans. The deduced preproproteins contain multiple copies of propeptides to be processed into a great variety of novel neuropeptides most of which are N-terminally different from MMA. Original MMA is only contained in the anthozoan precursors. Most of the novel neuropeptides will have the carboxyl terminus LWamide. Therefore, we term this novel neuropeptide family the LWamides. Peptides synthesized according to the precursor sequence of H. echinata and added to planulae trigger metamorphosis. In contrast, none of 11 other known biologically active peptides including carboxamidated neuropeptides were effective. Expression analysis by in situ hybridization and by antibodies against the H. echinata peptide reveals the presence of the gene product in planulae at the proper time and at the due spatial location expected for a natural role in metamorphosis. LWamide transcripts are also observed in nerve cells of primary and adult polyps, suggesting LWamides to be a multifunctional family of neuropeptides.

13.
Rouxs Arch Dev Biol ; 202(2): 70-76, 1993 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28305647

RESUMO

Repeated stimulation ofHydra magnipapillata with the diacylglycerol (DG) 1,2-sn-dioctanoylglycerol (diC8) induces an increase in positional value and eventually the development of ectopic heads. Upon stimulation, the polyps release [14C]-arachidonic acid from previously labelled endogenous sources. Arachidonic acid (AA) is not released into the external medium but remains within the animal, AA, linoleic acid and their lipoxygenase products were identified by gas chromatography-mass spectrometry. Several metabolites were found, most abundantly 12-HETE (hydroxy-eicosa-tetraenoic acid), 8-HETE, 9-HODE (hydroxy-octadecadienoic acid), and 13-HODE; this is the first evidence of their presence in coelenterates. Externally applied AA causes ectopic head formation, though less effectively than diC8. When administered simultaneously, (diC8) and AA, which both are known to activate protein kinase C (PKC), act synergistically in inducing ectopic head formation. Since released endogenous AA can spread in tissues, it may mediate a temporal and spatial extension of PKC activation and, hence, broaden the range in which positional value increases. However, in addition to the activation of PKC, the generation of AA metabolites appears to be essential for the induction of ectopic head formation, since not only a selective inhibitor of PKC, chelerythrine, but also an inhibitor of lipoxygenases, NDGA (nordihydroguaiaretic acid), significantly reduces the effectiveness of both AA and DG.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa