RESUMO
BACKGROUND: The primary antibody (Ab) response to Plasmodium falciparum is a critical step in developing immunity to malaria. Information on the initial Ab responses of babies in malaria-endemic areas is incomplete, in part, because babies receive maternal IgG via transplacental-transfer and usually become infected before maternal IgG wanes. The study aimed to identify the primary IgM and IgG Ab responses to malarial antigens in Cameroonian babies. METHODS: Infants (n = 70) living in a high malaria transmission area were followed from birth throughout the first year of life (mean 341 ± 42 days, an average of 8.5 time points per infant). Malaria infection was assessed by microscopy and PCR, and IgM and IgG antibodies (Abs) were measured using a multiplex immunoassay to AMA1, EBA-175, MSP1-42, MSP2, MSP3, RESA, LSA1, and CSP. RESULTS: The half-life of maternal IgG varied among the antigens, ranging from 0.7 to 2.5 months. The first infection of 41% of the babies was sub-microscopic and only 11 to 44% of the babies produced IgM to the above antigens; however, when the first infection was detected by microscopy, 59-82% of the infants made IgM Abs to the antigens. Infants were able to produce IgM even when maternal IgG was present, suggesting maternal Abs did not suppress the baby's initial Ab response. Using longitudinal regression models that incorporated time-varying covariates, infants were found to produce IgG Ab to only AMA-1 when the first infection was sub-microscopic, but they produced IgG Abs to MSP1-42 (3D7, FVO), AMA1 (3D7, FVO) MSP2-FC27, MSP3, RESA, and LSA1, but not MSP 2-3D7, EBA-175, and CSP during their first slide-positive infection. Notably, the primary and secondary IgG responses were short-lived with little evidence of boosting. CONCLUSIONS: The primary Ab response of babies who had maternal IgG was similar to that reported for primary infections in malaria-naïve adults.
Assuntos
Malária Falciparum , Malária , Humanos , Lactente , Adulto , Plasmodium falciparum , Malária Falciparum/epidemiologia , Anticorpos Antiprotozoários , Proteína 1 de Superfície de Merozoito , Formação de Anticorpos , Antígenos de Protozoários , Imunoglobulina M , Imunoglobulina GRESUMO
High-avidity antibodies (Abs) are acquired after a few Plasmodium falciparum infections in low transmission areas, but it remains unclear if Ab avidity to different merozoite antigens increases with age in individuals with persistent antigenemia and, if so, when a fully mature Ab response occurs. The study used plasma samples collected between 1996 and 1998 from 566 individuals aged 4 to 84 years in Simbok, Cameroon, where residents received an estimated 1.6 infectious mosquito bites/person/night. Plasma samples were examined for Ab levels (median fluorescence intensity [MFI]) and Ab avidity index (AI) (where AI = [MFI after treatment with 2 M NH4SCN/MFI without salt] × 100) using a bead-based multiplex immunoassay for recombinant AMA1, EBA-175, MSP1-42 (3D7, FVO), MSP2 (3D7, Fc27), and MSP3. Blood-smear positivity for P. falciparum declined with age from 54.3% at 4 to 5 years to 18% at 16 to 40 years and <11% at >40 years of age, although most individuals had submicroscopic parasitemia. Ab affinity maturation, based on age-related patterns of median AI, percentage of individuals with AI of ≥50, and strength of association between MFI and AI, occurred at different rates among the antigens; they developed rapidly before age 4 years for AMA1, increased gradually with age for EBA-175 and MSP1 until â¼16 to 25 years, but occurred negligibly for MSP2 and MSP3. In a hyperendemic area with perennial transmission, affinity maturation resulting in an increase in the proportion of high-avidity Abs occurred for some merozoite antigens, in parallel with a decline in malaria slide passivity, but not for others.
Assuntos
Anticorpos Antiprotozoários/imunologia , Afinidade de Anticorpos/imunologia , Antígenos de Protozoários/imunologia , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Merozoítos/imunologia , Plasmodium falciparum/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Camarões , Criança , Pré-Escolar , Feminino , Humanos , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: Malaria remains highly endemic in Cameroon. The rapid emergence and spread of drug resistance was responsible for the change from monotherapies to artemisinin-based combinations. This systematic review and meta-analysis aimed to determine the prevalence and distribution of Plasmodium falciparum drug resistance markers within an evolving efficacy of anti-malarial drugs in Cameroon from January 1998 to August 2020. METHODS: The PRISMA-P and PRISMA statements were adopted in the inclusion of studies on single nucleotide polymorphisms (SNPs) of P. falciparum anti-malarial drug resistance genes (Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, Pfatp6, Pfcytb and Pfk13). The heterogeneity of the included studies was evaluated using the Cochran's Q and I2 statistics. The random effects model was used as standard in the determination of heterogeneity between studies. RESULTS: Out of the 902 records screened, 48 studies were included in this aggregated meta-analysis of molecular data. A total of 18,706 SNPs of the anti-malarial drug resistance genes were genotyped from 47,382 samples which yielded a pooled prevalence of 35.4% (95% CI 29.1-42.3%). Between 1998 and 2020, there was significant decline (P < 0.0001 for all) in key mutants including Pfcrt 76 T (79.9%-43.0%), Pfmdr1 86Y (82.7%-30.5%), Pfdhfr 51I (72.2%-66.9%), Pfdhfr 59R (76.5%-67.8%), Pfdhfr 108 N (80.8%-67.6%). The only exception was Pfdhps 437G which increased over time (30.4%-46.9%, P < 0.0001) and Pfdhps 540E that remained largely unchanged (0.0%-0.4%, P = 0.201). Exploring mutant haplotypes, the study observed a significant increase in the prevalence of Pfcrt CVIET mixed quintuple haplotype from 57.1% in 1998 to 57.9% in 2020 (P < 0.0001). In addition, within the same study period, there was no significant change in the triple Pfdhfr IRN mutant haplotype (66.2% to 67.3%, P = 0.427). The Pfk13 amino acid polymorphisms associated with artemisinin resistance were not detected. CONCLUSIONS: This review reported an overall decline in the prevalence of P. falciparum gene mutations conferring resistance to 4-aminoquinolines and amino alcohols for a period over two decades. Resistance to artemisinins measured by the presence of SNPs in the Pfk13 gene does not seem to be a problem in Cameroon. Systematic review registration PROSPERO CRD42020162620.
Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Marcadores Genéticos/genética , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Camarões , Plasmodium falciparum/efeitos dos fármacosRESUMO
BACKGROUND: The COVID-19 pandemic has been associated with significant psychological and social distress worldwide. We investigated fear and depression among adults in Cameroon during different phases of the COVID-19 outbreak. METHODS: An online survey was conducted in Cameroon from June-December 2020 using a structured questionnaire. Socio-demographic data and information regarding COVID-19 history were obtained. Fear and depressive symptoms were assessed using the Fear of COVID-19 score (FCV-19S) and the Patient Health Questionnaire (PHQ-9), respectively. Responses were clustered in weeks to better appreciate their evolution over time. RESULTS: Overall, 7381 responses from all ten regions of Cameroon were analysed (median age: 30 years, 73.3% male). The prevalence of depression (PHQ-9 score ≥ 10) was 8.4%, and that of high fear of COVID-19 (FCV-19S scores ≥19) was 57.4%. These rates were similar across genders, age-groups, and region of residence. While mean weekly PHQ-9 scores remained fairly stable throughout the study period (range: 2.53-3.21; p = 0.101), mean FCV-19S scores were highest during the early weeks but decreased significantly thereafter (from 20.31 to 18.34; p < 0.001). Multivariate analyses revealed that having a postgraduate degree, a history of quarantine, flu-like symptoms during the past 14 days, and higher FCV-19S scores were associated with more severe depressive symptoms, while obtaining COVID-19 information from various sources reduced the odds for depression. CONCLUSION: Depression amidst the COVID-19 crisis is less prevalent in Cameroon than in other countries. Prompt and widespread dissemination of adequate COVID-19 information may reduce the risks for depression by dispelling fear and anxiety among Cameroonians.
Assuntos
COVID-19 , Pandemias , Adulto , Camarões/epidemiologia , Depressão/epidemiologia , Medo , Feminino , Humanos , Masculino , SARS-CoV-2RESUMO
Pregnant women are one of the most susceptible and vulnerable groups to malaria, the most important parasitic disease worldwide. Artemisinin-based combination therapies (ACTs) are recommended for the treatment of uncomplicated malaria in all population groups including pregnant women. However, due to the embryotoxicity observed in animal studies, ACTs have long been contraindicated during the first trimester in pregnant women. Despite the safety concerns raised in pre-clinical studies, recent findings on ACTs's use in pregnant women appear to be reassuring regarding safety and have prompted a revision of malaria treatment guidelines for first trimester of pregnancy. To contribute to the risk-benefit assessment of ACTs, we conducted a systematic literature review of animal studies published between 2007 and 2019, which evaluated the embryotoxic effects of artemisinin and its derivatives among pregnant mammals. Eighteen experimental studies fitted the inclusion criteria. These studies confirmed and further characterized the severe embryolethal and embryotoxic dose-dependent effects of artemisinin and its derivatives when administered during the organogenesis period in rats, rabbits and monkeys. Timing of administration and dosage of the drug were found to be key factors in the appearance of embryo damage. Overall, the translation of the findings of artemisinin derivatives use in animal studies to pregnant women remains disturbing. Thus, a policy change in the use of ACTs during the first trimester in pregnant women for the treatment of uncomplicated malaria does not seem pertinent and if implemented, it should be accompanied by solid pharmacovigilance systems, which are challenging to establish in malaria endemic countries.
Assuntos
Anormalidades Induzidas por Medicamentos , Antimaláricos/toxicidade , Artemisininas/toxicidade , Malária/prevenção & controle , Complicações Parasitárias na Gravidez/prevenção & controle , Animais , Embrião de Mamíferos/efeitos dos fármacos , Feminino , Humanos , GravidezRESUMO
BACKGROUND: Antibodies (Ab) play a significant role in immunity to Plasmodium falciparum malaria. Usually, following repeated exposure to pathogens, affinity maturation and clonal selection take place, resulting in increased antibody avidity. However, some studies suggest affinity maturation may not occur to malaria antigens in endemic areas. Information on development of antibody avidity is confusing and conflicting, in part, because different techniques have been used to measure avidity. Today, bead-based multiplex immunoassays (MIA) are routinely used to simultaneously quantitate antibody levels to multiple antigens. This study evaluated the feasibility of developing an avidity MIA with 5 merozoite antigens (AMA1, EBA-175, MSP1-42, MSP2, MSP3) that uses a single chaotropic concentration. METHODS: The most common ELISA protocols that used the chaotropic reagents guanidine HCl (GdHCl), urea, and ammonium thiocyanate (NH4SCN) were adapted to a multiplex MIA format. Then, different concentrations of chaotropes and incubation times were compared and results were expressed as an Avidity Index (AI), i.e., percentage of antibody remaining bound in the presence of chaotrope. Experiments were conducted to (i) identify the assay with the widest range of AI (discriminatory power), (ii) determine the amount of chaotrope needed to release 50% of bound Ab using plasma from adults and infants, and (iii) evaluate assay repeatability. RESULTS: Overall, 4 M GdHCl and 8 M urea were weaker chaotropes than 3 M NH4SCN. For example, they failed to release significant amounts of Ab bound to MSP1-42 in adult plasma samples; whereas, a range of AI values was obtained with NH4SCN. Titration of NH4SCN revealed that 2 M NH4SCN gave the widest range of AI for the 5 antigens. Binding studies using plasma from 40 adults and 57 1-year old infants in Cameroon showed that 2.1 M ± 0.32 (mean ± SD) NH4SCN (adults) and 1.8 M ± 0.23 M (infants) released 50% of bound Ab from the merozoite antigens. CONCLUSIONS: An avidity MIA is feasible for the 5 merozoite antigens that uses a single concentration (2 M) of NH4SCN. The assay provides a simple method to quickly obtain information about Ab quantity and quality in the acquisition of immunity to malaria in endemic populations.
Assuntos
Anticorpos Antiprotozoários/imunologia , Afinidade de Anticorpos/imunologia , Antígenos de Protozoários/imunologia , Plasmodium falciparum/imunologia , Adolescente , Adulto , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoensaio , Lactente , Malária Falciparum/imunologia , Masculino , Merozoítos/imunologia , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: This study evaluated the effectiveness of improved housing on indoor residual mosquito density and exposure to infected Anophelines in Minkoameyos, a rural community in southern forested Cameroon. METHODS: Following the identification of housing factors affecting malaria prevalence in 2013, 218 houses were improved by screening the doors and windows, installing plywood ceilings on open eaves and closing holes on walls and doors. Monthly entomological surveys were conducted in a sample of 21 improved and 21 non-improved houses from November 2014 to October 2015. Mosquitoes sampled from night collections on human volunteers were identified morphologically and their parity status determined. Mosquito infectivity was verified through Plasmodium falciparum CSP ELISA and the average entomological inoculation rates determined. A Reduction Factor (RF), defined as the ratio of the values for mosquitoes collected outdoor to those collected indoor was calculated in improved houses (RFI) and non-improved houses (RFN). An Intervention Effect (IE = RFI/RFN) measured the true effect of the intervention. Chi square test was used to determine variable significance. The threshold for statistical significance was set at P < 0.05. RESULTS: A total of 1113 mosquitoes were collected comprising Anopheles sp (58.6%), Culex sp (36.4%), Aedes sp (2.5%), Mansonia sp (2.4%) and Coquillettidia sp (0.2%). Amongst the Anophelines were Anopheles gambiae sensu lato (s.l.) (95.2%), Anopheles funestus (2.9%), Anopheles ziemanni (0.2%), Anopheles brohieri (1.2%) and Anopheles paludis (0.5%). Anopheles gambiae sensu stricto (s.s.) was the only An. gambiae sibling species found. The intervention reduced the indoor Anopheles density by 1.8-fold (RFI = 3.99; RFN = 2.21; P = 0.001). The indoor density of parous Anopheles was reduced by 1.7-fold (RFI = 3.99; RFN = 2.21; P = 0.04) and that of infected Anopheles by 1.8-fold (RFI = 3.26; RFN = 1.78; P = 0.04). Indoor peak biting rates were observed between 02 a.m. to 04 a.m. in non-improved houses and from 02 a.m. to 06 a.m. in improved houses. CONCLUSION: Housing improvement contributed to reducing indoor residual anopheline density and malaria transmission. This highlights the need for policy specialists to further evaluate and promote aspects of house design as a complementary control tool that could reduce indoor human-vector contact and malaria transmission in similar epidemiological settings.
Assuntos
Anopheles/fisiologia , Controle de Doenças Transmissíveis/métodos , Habitação/estatística & dados numéricos , Malária/transmissão , Mosquitos Vetores/fisiologia , Animais , Camarões , Humanos , Malária/prevenção & controle , Densidade Demográfica , População RuralAssuntos
Antimaláricos , Malária Falciparum , Malária , Complicações Parasitárias na Gravidez , Gravidez , Feminino , Humanos , Primeiro Trimestre da Gravidez , Malária/tratamento farmacológico , Antimaláricos/uso terapêutico , Complicações Parasitárias na Gravidez/tratamento farmacológico , Malária Falciparum/tratamento farmacológicoRESUMO
BACKGROUND: Accurate diagnosis of malaria is important for effective disease management and control. In Cameroon, presumptive clinical diagnosis, thick-film microscopy (TFM), and rapid diagnostic tests (RDT) are commonly used to diagnose cases of Plasmodium falciparum malaria. However, these methods lack sensitivity to detect low parasitaemia. Polymerase chain reaction (PCR), on the other hand, enhances the detection of sub-microscopic parasitaemia making it a much-needed tool for epidemiological surveys, mass screening, and the assessment of interventions for malaria elimination. Therefore, this study sought to determine the frequency of cases missed by traditional methods that are detected by PCR. METHODS: Blood samples, collected from 551 febrile Cameroonian patients between February 2014 and February 2015, were tested for P. falciparum by microscopy, RDT and PCR. The hospital records of participants were reviewed to obtain data on the clinical diagnosis made by the health care worker. RESULTS: The prevalence of malaria by microscopy, RDT and PCR was 31%, 45%, and 54%, respectively. However, of the 92% of participants diagnosed as having clinical cases of malaria by the health care worker, 38% were malaria-negative by PCR. PCR detected 23% and 12% more malaria infections than microscopy and RDT, respectively. A total of 128 (23%) individuals had sub-microscopic infections in the study population. The sensitivity of microscopy, RDT, and clinical diagnosis was 57%, 78% and 100%; the specificity was 99%, 94%, and 17%; the positive predictive values were 99%, 94%, and 59%; the negative predictive values were 66%, 78%, and 100%, respectively. Thus, 41% of the participants clinically diagnosed as having malaria had fever caused by other pathogens. CONCLUSIONS: Malaria diagnostic methods, such as TFM and RDT missed 12-23% of malaria cases detected by PCR. Therefore, traditional diagnostic approaches (TFM, RDT and clinical diagnosis) are not adequate when accurate epidemiological data are needed for monitoring malaria control and elimination interventions.
Assuntos
Sangue/parasitologia , Testes Diagnósticos de Rotina/métodos , Imunoensaio/métodos , Malária Falciparum/diagnóstico , Microscopia/métodos , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Camarões , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Sensibilidade e Especificidade , Inquéritos e Questionários , Adulto JovemRESUMO
Plasmodium falciparum infections are serious in pregnant women, because VAR2CSA allows parasitized erythrocytes to sequester in the placenta, causing placental malaria (PM). In areas of endemicity, women have substantial malarial immunity prior to pregnancy, including antibodies to merozoite antigens, but produce antibodies to VAR2CSA only during pregnancy. The current study sought to determine the importance of antibodies to VAR2CSA and merozoite antigens in pregnant women in Yaoundé, Cameroon, where malaria transmission was relatively low. A total of 1,377 archival plasma samples collected at delivery were selected (at a 1:3 ratio of PM-positive [PM+] to PM-negative [PM-] women) and screened for antibodies to full-length VAR2CSA and 7 merozoite antigens. Results showed that many PM+ women and most PM- women lacked antibodies to VAR2CSA at delivery. Among PM+ women, antibodies to VAR2CSA were associated with a reduced risk of having high placental parasitemia (odds ratio [OR], 0.432; confidence interval [CI], 0.272, 0.687; P = 0.0004) and low-birth-weight (LBW) babies (OR = 0.444; CI, 0.247, 0.799; P = 0.0068), even during first pregnancies. Among antibodies to the 7 merozoite antigens, i.e., AMA1, EBA-175, MSP142, MSP2, MSP3, MSP11, and Pf41, only antibodies to MSP3, EBA-175, and Pf41 were associated with reduced risk for high placental parasitemias (P = 0.0389, 0.0291, and 0.0211, respectively) and antibodies to EBA-175 were associated with reduced risk of premature deliveries (P = 0.0211). However, after adjusting for multiple comparisons significance declined. Thus, in PM+ women, antibodies to VAR2CSA were associated with lower placental parasitemias and reduced prevalence of LBW babies in this low-transmission setting.
Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Malária Falciparum/imunologia , Complicações Parasitárias na Gravidez/imunologia , Resultado da Gravidez , Adulto , Camarões/epidemiologia , Feminino , Humanos , Imunoglobulina G/sangue , Recém-Nascido de Baixo Peso , Transmissão Vertical de Doenças Infecciosas , Proteína 1 de Superfície de Merozoito/imunologia , Merozoítos/imunologia , Parasitemia/imunologia , Placenta/parasitologia , Gravidez , Proteínas de Protozoários/imunologia , Adulto JovemRESUMO
BACKGROUND: Plasmodium falciparum infected erythrocytes sequestering in placental tissue release Plasmodium lactate dehydrogenase (pLDH) and histidine-rich protein-II (HRP-II). These proteins can be detected in peripheral blood using monoclonal antibody-based rapid diagnostic tests (RDTs). Nevertheless, studies to evaluate the reliability of RDTs in detecting placental malaria compared with microscopy of placental tissue impression smear (PTIS) as the gold standard are scarce. METHODS: Between August 2013 and January 2015, Giemsa-stained blood smears for peripheral blood smear (Pbs), placental intervillous space (IVS) blood smear and placental tissue impression smear (PTIS)] were prepared from HIV-negative women during delivery at the Marie Reine Medical Health Centre in Yaoundé, Cameroon. RDTs with monoclonal antibodies specific to HRP-II (P.f) or pLDH (Pan) antigens were used to screen maternal peripheral blood samples. RESULTS: The prevalence of malaria was 16%, 7.5%, 11.5%, 8% and 13% for One Step malaria HRP-II and pLDH RDTs, peripheral blood smear, IVS blood and placental tissue impression smears, respectively. The proportion of women positive by One Step malaria pLDH RDT and Pbs increased with parasite density in PTIS, while One Step malaria HRP-II RDT detected high proportion of infected women even with low parasite density. Although the prevalence of malaria infection by both microscopy and RDTs decreased significantly with mother age (0.0008 ≤ p ≤ 0.025), parity seemed to have very little influence. The sensitivity of One Step malaria HRP-II and pLDH RDTs were 96.15% and 61.53%, respectively, compared to 80.76% for Pbs (p = 0.014 and 0.0029, respectively). The specificity of these RDTs was 96.49% and 100%, respectively, compared to 100% for Pbs (p ≥ 0.12). In addition, the positive predictive values were 80.64% and 100% for HRP-II and pLDH-based RDTs, respectively, compared to 100% for Pbs (p < 0.0001 and 1, respectively), while the negative predictive values were 99.40% and 94.48%, respectively, compared to 97.16% for Pbs (p ≥ 0.49). The combination of One Step malaria HRP-II RDT and Pbs showed the similar performance as that observed with One Step malaria HRP-II RDT only. CONCLUSION: These results depict One Step malaria HRP-II RDT to be better in detecting placental P. falciparum infection in pregnant women compared to Giemsa-stained peripheral thick blood smear. This is important for better case management since microscopic examination of PTIS cannot be employed during pregnancy.
Assuntos
Malária Falciparum/diagnóstico , Doenças Placentárias/diagnóstico , Plasmodium falciparum , Complicações Infecciosas na Gravidez/diagnóstico , Kit de Reagentes para Diagnóstico/parasitologia , Adolescente , Adulto , Camarões , Estudos Transversais , Feminino , Humanos , Malária Falciparum/sangue , Microscopia , Razão de Chances , Placenta/parasitologia , Gravidez , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto JovemRESUMO
BACKGROUND: Antibodies play an important role in immunity to malaria. Recent studies show that antibodies to multiple antigens, as well as, the overall breadth of the response are associated with protection from malaria. Yet, the variability and reliability of antibody measurements against a combination of malarial antigens using multiplex assays have not been well characterized. METHODS: A normalization procedure for reducing between-plate variation using replicates of pooled positive and negative controls was investigated. Sixty test samples (30 from malaria-positive and 30 malaria-negative individuals), together with five pooled positive-controls and two pooled negative-controls, were screened for antibody levels to 9 malarial antigens, including merozoite antigens (AMA1, EBA175, MSP1, MSP2, MSP3, MSP11, Pf41), sporozoite CSP, and pregnancy-associated VAR2CSA. The antibody levels were measured in triplicate on each of 3 plates, and the experiments were replicated on two different days by the same technician. The performance of the proposed normalization procedure was evaluated with the pooled controls for the test samples on both the linear and natural-log scales. RESULTS: Compared with data on the linear scale, the natural-log transformed data were less skewed and reduced the mean-variance relationship. The proposed normalization procedure using pooled controls on the natural-log scale significantly reduced between-plate variation. CONCLUSIONS: For malaria-related research that measure antibodies to multiple antigens with multiplex assays, the natural-log transformation is recommended for data analysis and use of the normalization procedure with multiple pooled controls can improve the precision of antibody measurements.
Assuntos
Anticorpos Antiprotozoários/imunologia , Plasmodium falciparum/imunologia , Humanos , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Diagnosis of Plasmodium falciparum is often based on detection of histidine-rich protein 2 (HRP2) in blood. Most HRP2-based assays have high sensitivity and specificity; however, authors have suggested that antibodies (Ab) to HRP2 could reduce assay sensitivity. This study sought to characterize the antibody response to HRP2 with respect to prevalence, class, subclass, affinity, and age distribution in Cameroonian children and adults residing in an area with high P. falciparum transmission. METHODS: Plasma samples from 181 Cameroonian children and adults who had been repeatedly exposed to P. falciparum and 112 samples from American adults who had never been exposed were tested for IgG Ab to HRP2. For comparison, Ab to the merozoite antigens MSP1, MSP2, MSP3 and the pregnancy-associated antigen VAR2CSA were measured using a multiplex bead-based assay. In addition, 81 plasma samples from slide-positive individuals were screened for IgM Ab to HRP2. RESULTS: As expected, children and adults had IgG Ab to MSP1, MSP2 and MSP3, antibody levels increased with age, and only women of child-bearing age had Ab to VAR2CSA; however, no convincing evidence was found that these individuals had an acquired antibody response to HRP2. That is, using two sources of recombinant HRP2, identical results were obtained when plasma from 110 Cameroonian adults and 112 US adults were screened for IgG Ab. Further studies showed that antibody prevalence and levels did not increase with age in Cameroonians between ages 5 and >80 years. Although a few samples from slide-positive Cameroonians had IgM values slightly above the American cut-off, it was unclear if the individuals had a true IgM response to HRP2 or if the values were due to non-specific binding from elevated immunoglobulin levels associated with infection. Data from prediction models showed a paucity of Class II T cell epitopes in HRP2. CONCLUSIONS: These data support the conclusion that most individuals in malaria-endemic areas do not produce an acquired humoral response to HRP2. The absence of Ab helps explain why HRP2-based assays are able to detect nanogram amounts of HRP2 and why HRP2 continues to circulate for a long time after parasite clearance.
Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Doenças Endêmicas , Malária Falciparum/imunologia , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Protozoários/sangue , Camarões/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Imunoglobulina M/sangue , Malária Falciparum/epidemiologia , Masculino , Proteína 1 de Superfície de Merozoito/sangue , Pessoa de Meia-Idade , Gravidez , Proteínas de Protozoários/sangue , Estados Unidos , Adulto JovemRESUMO
BACKGROUND: Plasmodium falciparum infections are especially severe in pregnant women because infected erythrocytes (IE) express VAR2CSA, a ligand that binds to placental trophoblasts, causing IE to accumulate in the placenta. Resulting inflammation and pathology increases a woman's risk of anemia, miscarriage, premature deliveries, and having low birthweight (LBW) babies. Antibodies (Ab) to VAR2CSA reduce placental parasitaemia and improve pregnancy outcomes. Currently, no single assay is able to predict if a woman has adequate immunity to prevent placental malaria (PM). This study measured Ab levels to 28 malarial antigens and used the data to develop statistical models for predicting if a woman has sufficient immunity to prevent PM. METHODS: Archival plasma samples from 1377 women were screened in a bead-based multiplex assay for Ab to 17 VAR2CSA-associated antigens (full length VAR2CSA (FV2), DBL 1-6 of the FCR3, 3D7 and 7G8 lines, ID1-ID2a (FCR3 and 3D7) and 11 antigens that have been reported to be associated with immunity to P. falciparum (AMA-1, CSP, EBA-175, LSA1, MSP1, MSP2, MSP3, MSP11, Pf41, Pf70 and RESA)). Ab levels along with clinical variables (age, gravidity) were used in the following seven statistical approaches: logistic regression full model, logistic regression reduced model, recursive partitioning, random forests, linear discriminant analysis, quadratic discriminant analysis, and support vector machine. RESULTS: The best and simplest model proved to be the logistic regression reduced model. AMA-1, MSP2, EBA-175, Pf41, and MSP11 were found to be the top five most important predictors for the PM status based on overall prediction performance. CONCLUSIONS: Not surprising, significant differences were observed between PM positive (PM+) and PM negative (PM-) groups for Ab levels to the majority of malaria antigens. Individually though, these malarial antigens did not achieve reasonably high performances in terms of predicting the PM status. Utilizing multiple antigens in predictive models considerably improved discrimination power compared to individual assays. Among seven different classifiers considered, the reduced logistic regression model produces the best overall predictive performance.
Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Malária Falciparum/imunologia , Placenta/imunologia , Plasmodium falciparum/imunologia , Complicações Parasitárias na Gravidez/imunologia , Adolescente , Adulto , Camarões , Feminino , Humanos , Modelos Estatísticos , Plasmodium falciparum/parasitologia , Gravidez , Complicações Parasitárias na Gravidez/parasitologia , Adulto JovemRESUMO
BACKGROUND: Current malaria diagnostic methods require blood collection, that may be associated with pain and the risk of transmitting blood-borne pathogens, and often create poor compliance when repeated sampling is needed. On the other hand, the collection of saliva is minimally invasive; but saliva has not been widely used for the diagnosis of malaria. The aim of this study was to evaluate the diagnostic performance of saliva collected and stored at room temperature using the OMNIgene®â¢ORAL kit for diagnosing Plasmodium falciparum malaria. METHODS: Paired blood and saliva samples were collected from 222 febrile patients in Cameroon. Saliva samples were collected using the OMNIgene®â¢ORAL (OM-501) kit and stored at room temperature for up to 13 months. Thick blood film microscopy (TFM) was used to detect P. falciparum blood-stage parasites in blood. Detection of P. falciparum DNA in blood and saliva was based on amplification of the multi-copy 18 s rRNA gene using the nested-polymerase chain reaction (nPCR). RESULTS: Prevalence of malaria detected by TFM, nPCR-saliva and nPCR-blood was 22, 29, and 35%, respectively. Using TFM as the gold standard, the sensitivity of nPCR-saliva and nPCR-blood in detecting P. falciparum was 95 and 100%, respectively; with corresponding specificities of 93 and 87%. When nPCR-blood was used as gold standard, the sensitivity of nPCR-saliva and microscopy was 82 and 68%, respectively; whereas, the specificity was 99 and 100%, respectively. Nested PCR-saliva had a very good agreement with both TFM (kappa value 0.8) and blood PCR (kappa value 0.8). At parasitaemia > 10,000 parasites/µl of blood, the sensitivity of nPCR-saliva was 100%. Nested PCR-saliva detected 16 sub-microscopic malaria infections. One year after sample collection, P. falciparum DNA was detected in 80% of saliva samples stored at room temperature. CONCLUSIONS: Saliva can potentially be used as an alternative non-invasive sample for the diagnosis of malaria and the OMNIgene®â¢ORAL kit is effective at transporting and preserving malaria parasite DNA in saliva at room temperature. The technology described in this study for diagnosis of malaria in resource-limited countries adds on to the armamentarium needed for elimination of malaria.
Assuntos
Testes Diagnósticos de Rotina/métodos , Malária Falciparum/diagnóstico , Plasmodium falciparum/isolamento & purificação , Saliva/parasitologia , Adolescente , Adulto , Idoso , Camarões/epidemiologia , Criança , Pré-Escolar , Testes Diagnósticos de Rotina/instrumentação , Feminino , Humanos , Malária Falciparum/epidemiologia , Masculino , Microscopia/métodos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Prevalência , Temperatura , Adulto JovemRESUMO
BACKGROUND: Drug-resistant tuberculosis, especially multidrug-resistant tuberculosis (MDR-TB), is a major public health problem. Effective management of MDR-TB relies on accurate and rapid diagnosis. In this study, we assessed the diagnostic accuracy of the Genotype MTBDRplus assay in diagnosing MDR-TB in Cameroon, and then discuss on its utility within the diagnostic algorithm for MDR-TB. METHODS: In this cross-sectional study, 225 isolates of Mycobacterium tuberculosis cultured from sputum samples collected from new and previously treated pulmonary tuberculosis patients in Cameroon were used to determine the accuracy of the Genotype MTBDRplus assay. We compared the results of the Genotype MTBDRplus assay with those from the automated liquid culture BACTEC MGIT 960 SIRE system for sensitivity, specificity, and degree of agreement. The pattern of mutations associated with resistance to RIF and INH were also analyzed. RESULTS: The Genotype MTBDRplus assay correctly identified Rifampicin (RIF) resistance in 48/49 isolates (sensitivity, 98% [CI, 89%-100%]), Isoniazid (INH) resistance in 55/60 isolates (sensitivity 92% [CI, 82%-96%]), and MDR-TB in 46/49 (sensitivity, 94% [CI, 83%-98%]). The specificity for the detection of RIF-resistant and MDR-TB cases was 100% (CI, 98%-100%), while that of INH resistance was 99% (CI, 97%-100%). The agreement between the two tests for the detection of MDR-TB was very good (Kappa = 0.96 [CI, 0.92-1.00]). Among the 3 missed MDR-TB cases, the Genotype MTBDRplus assay classified two samples as RIF-monoresistant and one as INH monoresistant. The most frequent mutations detected by the Genotype MTBDRplus assay was the rpoB S531 L MUT3 41/49 (84%) in RIF-resistant isolates, and the KatG S315 T1 (MUT1) 35/55 (64%) and inhA C15T (MUT1) 20/55 (36%) mutations in INH-resistant isolates. CONCLUSION: The Genotype MTBDRplus assay had good accuracy and could be used for the diagnosis of MDR-TB in Cameroon. For routine MDR-TB diagnosis, this assay could be used for Mycobacterium tuberculosis cultures containing contaminants, to complement culture-based drug susceptibility testing or to determine drug resistant mutations.
Assuntos
Técnicas de Diagnóstico Molecular/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Pulmonar/microbiologia , Adulto , Antituberculosos/uso terapêutico , Proteínas de Bactérias/genética , Camarões , Estudos Transversais , Feminino , Genótipo , Técnicas de Genotipagem/métodos , Humanos , Isoniazida/farmacologia , Masculino , Testes de Sensibilidade Microbiana/métodos , Pessoa de Meia-Idade , Mutação , Taxa de Mutação , Mycobacterium tuberculosis/isolamento & purificação , Oxirredutases/genética , Rifampina/farmacologia , Sensibilidade e Especificidade , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológicoRESUMO
BACKGROUND: The impact of placental malaria (PM) infection on the expression profile of some cytokines known to regulate T cell differentiation and function and their influence on birth weight remain unclear. Moreover, there are no reports showing the relationship between PM and IL-27 or IL-28A. This study therefore sought to investigate whether placental P. falciparum infection alters the expression profile of the cytokines IL-28A, IL-27, IL-17E and IL-6 in mothers and their new born. METHODS: In a cross-sectional study conducted between 2013 and 2015 in Yaoundé, Cameroon, peripheral, placental and cord blood samples were collected from 108 women at delivery. Parasitaemia was determined microscopically and haemoglobin levels determined using a Coulter counter. Plasma levels of cytokines (IL-28A, IL-27, IL-17E and IL-6) were measured by Luminex magnetic screening assay. RESULTS: Malaria parasite density in placenta impression smear associated negatively with maternal haemoglobin level (P < 0.0001) and baby birth weight (P = 0.016). While IL-17E, IL-27 and IL-28A levels were significantly higher in placental and cord plasma than in peripheral (P < 0.0001, < 0.001 and P = 0.026, respectively), an opposite relationship was observed with IL-6 (P = 0.0018). Multivariate analysis confirmed results of univariate analysis where the presence of malaria parasites or pigments in placenta tissue impression smears correlated with decrease levels of maternal IL-17E, IL-27 and IL-28A and neonate levels of IL-28A and IL-17E (0.0001 ≤ P ≤ 0.02). Placental and peripheral parasitaemias also correlated positively with peripheral plasma levels of IL-6 (rs = 0.18, P = 0.05 and rs = 0.17, P = 0.07, respectively). In addition, high maternal haemoglobin level associated with increasing levels of IL-17E, IL-27 and IL-28A in peripheral plasma (0.002 ≤ P ≤ 0.018) and high placental and cord plasma levels of these cytokines associated with increasing birth weight (0.0001 ≤ P ≤ 0.0027). CONCLUSIONS: Placental malaria downregulates maternal plasma levels of IL-17E, IL-27 and IL-28A and neonates' plasma levels of IL-17E and IL-28A cytokines, which could help for parasite clearance and increase child birth weight. The study is expected to provide leads that should help identify potential biomarkers for improved birth weight and therapeutic interventions.
Assuntos
Citocinas/sangue , Malária Falciparum/patologia , Doenças Placentárias/patologia , Complicações Infecciosas na Gravidez/patologia , Linfócitos T/imunologia , Adolescente , Adulto , Camarões , Estudos Transversais , Feminino , Humanos , Tolerância Imunológica , Recém-Nascido , Plasma/química , Gravidez , Adulto JovemRESUMO
BACKGROUND: Antigenic variation of Plasmodium falciparum erythrocyte membrane protein 1 is a key parasite mechanism for immune evasion and parasite survival. It is assumed that the number of parasites expressing the same var gene must reach high enough numbers before the host can produce detectable levels of antibodies (Ab) to the variant. VAR2CSA is a protein coded for by one of 60 var genes that is expressed on the surface of infected erythrocytes (IE) and mediates IE binding to the placenta. The idea that Ab to VAR2CSA are pregnancy-associated was challenged when VAR2CSA-specific Ab were reported in children and men. However, the frequency and conditions under which Ab to VAR2CSA are produced outside pregnancy is unclear. This study sought to determine frequency, specificity and level of Ab to VAR2CSA produced in children and whether children with hyperparasitaemia and severe malaria are more likely to produce Ab to VAR2CSA compared to healthy children. METHODS: Antibody responses to a panel of recombinant proteins consisting of multiple VAR2CSA Duffy-binding-like domains (DBL) and full-length VAR2CSA (FV2) were characterized in 193 1-15 year old children from rural Cameroonian villages and 160 children with severe malaria from the city. RESULTS: Low Ab levels to VAR2CSA were detected in children; however, Ab levels to FV2 in teenagers were rare. Children preferentially recognized DBL2 (56-70%) and DBL4 (50-60%), while multigravidae produced high levels of IgG to DBL3, DBL5 and FV2. Sixty-seven percent of teenage girls (n = 16/24) recognized ID1-ID2a region of VAR2CSA. Children with severe forms of malaria had significantly higher IgG to merozoite antigens (all p < 0.05), but not to VAR2CSA (all p > 0.05) when compared to the healthy children. CONCLUSION: The study suggests that children, including teenage girls acquire Ab to VAR2CSA domains and FV2, but Ab levels are much lower than those needed to protect women from placental infections and repertoire of Ab responses to DBL domains is different from those in pregnant women. Interestingly, children with severe malaria did not have higher Ab levels to VAR2CSA compared to healthy children.
Assuntos
Anticorpos Antiprotozoários/sangue , Formação de Anticorpos , Antígenos de Protozoários/imunologia , Plasmodium falciparum/imunologia , Adolescente , Camarões , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Estudos Longitudinais , MasculinoRESUMO
BACKGROUND: All suspected cases of malaria should receive a diagnostic test prior to treatment with artemisinin-based combinations based on the new WHO malaria treatment guidelines. This study compared the accuracy and some operational characteristics of 22 different immunochromatographic antigen capture point-of- malaria tests (RDTs) in Cameroon to inform test procurement prior to deployment of artemisinin-based combinations for malaria treatment. METHODS: One hundred human blood samples (50 positive and 50 negative) collected from consenting febrile patients in two health centres at Yaoundé were used for evaluation of the 22 RDTs categorized as "Pf Only" (9) or "Pf + PAN" (13) based on parasite antigen captured [histidine rich protein II (HRP2) or lactate dehydrogenase (pLDH) or aldolase]. RDTs were coded to blind technicians performing the tests. The sensitivity, specificity, and predictive values of the positive and negative tests (PPV and NPV) as well as the likelihood ratios were assessed. The reliability and some operational characteristics were determined as the mean values from two assessors, and the Cohen's kappa statistic was then used to compare agreement. Light microscopy was the referent. RESULTS: Of all RDTs tested, 94.2 % (21/22) had sensitivity values greater than 90% among which 14 (63.6%) were 'Pf + PAN' RDTs. The specificity was generally lower than the sensitivity for all RDTs and poorer for "Pf Only" RDTs. The predictive values and likelihood ratios were better for non-HRP2 analytes for "Pf + PAN" RDTs. The Kappa value for most of the tests obtained was around 67% (95% CI 50-69%), corresponding to a moderate agreement. CONCLUSION: Overall, 94.2% (21/22) of RDTs tested had accuracy within the range recommended by the WHO, while one performed poorly, below acceptable levels. Seven "Pf + PAN" and 3 "Pf Only" RDTs were selected for further assessment based on performance characteristics. Harmonizing RDT test presentation and procedures would prevent mistakes of test performance and interpretation.