RESUMO
In a 7-year 11-wave study of low-SES adolescents (N = 856, age = 15.98), we compared multiple well-established transdiagnostic risk factors as predictors of first incidence of significant depressive, anxiety, and substance abuse symptoms across the transition from adolescence to adulthood. Risk factors included negative emotionality, emotion regulation ability, social support, gender, history of trauma, parental histories of substance abuse, parental mental health, and socioeconomic status. Machine learning models revealed that negative emotionality was the most important predictor of both depression and anxiety, and emotion regulation ability was the most important predictor of future significant substance abuse. These findings highlight the critical role that dysregulated emotion may play in the development of some of the most prevalent forms of mental illness.
RESUMO
BACKGROUND: The impacts of the COVID-19 pandemic on mental health worldwide and in the United States have been well documented. However, there is limited research examining the long-term effects of the pandemic on mental health, particularly in relation to pervasive policies such as statewide mask mandates and political party affiliation. OBJECTIVE: The goal of this study was to examine whether statewide mask mandates and political party affiliations yielded differential changes in mental health symptoms across the United States by leveraging state-specific internet search query data. METHODS: This study leveraged Google search queries from March 24, 2020, to March 29, 2021, in each of the 50 states in the United States. Of the 50 states, 39 implemented statewide mask mandates-with 16 of these states being Republican-to combat the spread of COVID-19. This study investigated whether mask mandates were associated differentially with mental health in states with and without mandates by exploring variations in mental health search queries across the United States. In addition, political party affiliation was examined as a potential covariate to determine whether mask mandates had differential associations with mental health in Republican and Democratic states. Generalized additive mixed models were implemented to model associations among mask mandates, political party affiliation, and mental health search volume for up to 7 months following the implementation of a mask mandate. RESULTS: The results of generalized additive mixed models revealed that search volume for "restless" significantly increased following a mask mandate across all states, whereas the search volume for "irritable" and "anxiety" increased and decreased, respectively, following a mandate for Republican states in comparison with Democratic states. Most mental health search terms did not exhibit significant changes in search volume in relation to mask mandate implementation. CONCLUSIONS: These findings suggest that mask mandates were associated nonlinearly with significant changes in mental health search behavior, with the most notable associations occurring in anxiety-related search terms. Therefore, policy makers should consider monitoring and providing additional support for these mental health symptoms following the implementation of public health-related mandates such as mask mandates. Nevertheless, these results do not provide evidence for an overwhelming impact of mask mandates on population-level mental health in the United States.
Assuntos
COVID-19 , Humanos , Estados Unidos , Pandemias , Saúde Mental , Saúde Pública/métodos , InternetRESUMO
OBJECTIVE: Transdiagnostic perspectives on the shared origins of mental illness posit that dysregulated emotion may represent a key driving force behind multiple forms of psychopathology, including substance use disorders. The present study examined whether a link between dysregulated emotion and trying illicit substances could be observed in childhood. METHOD: In a large (N = 7,418) nationally representative sample of children (Mage = 9.9), individual differences in emotion dysregulation were indexed using child and parent reports of frequency of children's emotional outbursts, as well as children's performance on the emotional N-Back task. Two latent variables, derived from either parental/child-report or performance-based indicators, were evaluated as predictors of having ever tried alcohol, tobacco, or marijuana. RESULTS: Results showed that reports of dysregulated emotion were linked to a greater likelihood of trying both alcohol and tobacco products. These findings were also present when controlling for individual differences in executive control and socioeconomic status. CONCLUSIONS: These results suggest that well-established links between dysregulated negative emotion and substance use may emerge as early as in childhood and also suggest that children who experience excessive episodes of uncontrollable negative emotion may be at greater risk for trying substances early in life.
Assuntos
Emoções , Transtornos Relacionados ao Uso de Substâncias , Humanos , Criança , Estudos de Coortes , Emoções/fisiologia , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/psicologia , Função ExecutivaRESUMO
OBJECTIVE: Anorexia nervosa (AN) is commonly experienced alongside difficulties of emotion regulation (ER). Previous works identified physical activity (PA) as a mechanism for AN sufferers to achieve desired affective states, with evidence towards mitigation of negative affect. However, temporal associations of PA with specific emotional state outcomes are unknown. METHOD: Using lag-ensemble machine learning and feature importance analyses, 888 affect-based ecological momentary assessments across N = 75 adolescents with AN (N = 44) and healthy controls (N = 31) were analysed to explore significance of past PA, measured through passively collected wrist-worn actigraphy, with subsequent self-report momentary affect change across 9 affect constructs. RESULTS: Among AN adolescents, later lags (≥2.5 h) were important in predicting change across negative emotions (hostility, sadness, fear, guilt). AN-specific model performance on held-out test data revealed the holistic "negative affect" construct as significantly predictable. Only joviality and self-assurance, both positively-valenced constructs, were significantly predictable among healthy-control-specific models. DISCUSSION: Results recapitulated previous findings regarding the importance of PA in negative ER for AN individuals. Moreover, PA was found to play a uniquely prominent role in predicting negative affect 4.5-6 h later among AN adolescents. Future research into the PA-ER dynamic will benefit from targeting specific negative emotions across greater temporal scales.
Assuntos
Regulação Emocional , Humanos , Adolescente , Exercício Físico , Aprendizado de MáquinaRESUMO
OBJECTIVE: The prevalence of suicide in the United States has seen an increasing trend and is responsible for 1.6% of all mortality nationwide. Although suicide has the potential to broadly impact the entire population, it has a substantially increased prevalence in persons with epilepsy (PWE), despite many of these individuals consistently seeing a health care provider. The goal of this work is to predict the development of suicidal ideation (SI) in PWE using machine learning methodology such that providers can be better prepared to address suicidality at visits where it is likely to be prominent. METHODS: The current study leverages data collected at an epilepsy clinic during patient visits to predict whether an individual will exhibit SI at their next visit. The data used for prediction consisted of patient responses to questions about the severity of their epilepsy, issues with memory/concentration, somatic problems, markers for mental health, and demographic information. A machine learning approach was then applied to predict whether an individual would display SI at their following visit using only data collected at the prior visit. RESULTS: The modeling approach allowed for the successful prediction of an individual's passive and active SI severity at the following visit (r = .42, r = .39) as well as the presence of SI regardless of severity (area under the curve [AUC] = .82, AUC = .8). This shows that the model was successfully able to synthesize the unique combination of an individual's responses to important questions during a clinical visit and utilize that information to indicate whether that individual will exhibit SI at their next visit. SIGNIFICANCE: The results of this modeling approach allow the health care team to be prepared, in advance of a clinical visit, for the potential reporting of SI. By allowing the necessary support to be prepared ahead of time, it can be better integrated at the point of care, where patients are most likely to follow up on potential referrals or treatment.
Assuntos
Epilepsia , Suicídio , Área Sob a Curva , Epilepsia/psicologia , Humanos , Prevalência , Ideação Suicida , Estados UnidosRESUMO
BACKGROUND: The digital era has ushered in an unprecedented volume of readily accessible information, including news coverage of current events. Research has shown that the sentiment of news articles can evoke emotional responses from readers on a daily basis with specific evidence for increased anxiety and depression in response to coverage of the recent COVID-19 pandemic. Given the primacy and relevance of such information exposure, its daily impact on the mental health of the general population within this modality warrants further nuanced investigation. OBJECTIVE: Using the COVID-19 pandemic as a subject-specific example, this work aimed to profile and examine associations between the dynamics of semantic affect in online local news headlines and same-day online mental health term search behavior over time across the United States. METHODS: Using COVID-19-related news headlines from a database of online news stories in conjunction with mental health-related online search data from Google Trends, this paper first explored the statistical and qualitative affective properties of state-specific COVID-19 news coverage across the United States from January 23, 2020, to October 22, 2020. The resultant operationalizations and findings from the joint application of dictionary-based sentiment analysis and the circumplex theory of affect informed the construction of subsequent hypothesis-driven mixed effects models. Daily state-specific counts of mental health search queries were regressed on circumplex-derived features of semantic affect, time, and state (as a random effect) to model the associations between the dynamics of news affect and search behavior throughout the pandemic. Search terms were also grouped into depression symptoms, anxiety symptoms, and nonspecific depression and anxiety symptoms to model the broad impact of news coverage on mental health. RESULTS: Exploratory efforts revealed patterns in day-to-day news headline affect variation across the first 9 months of the pandemic. In addition, circumplex mapping of the most frequently used words in state-specific headlines uncovered time-agnostic similarities and differences across the United States, including the ubiquitous use of negatively valenced and strongly arousing language. Subsequent mixed effects modeling implicated increased consistency in affective tone (SpinVA ß=-.207; P<.001) as predictive of increased depression-related search term activity, with emotional language patterns indicative of affective uncontrollability (FluxA ß=.221; P<.001) contributing generally to an increase in online mental health search term frequency. CONCLUSIONS: This study demonstrated promise in applying the circumplex model of affect to written content and provided a practical example for how circumplex theory can be integrated with sentiment analysis techniques to interrogate mental health-related associations. The findings from pandemic-specific news headlines highlighted arousal, flux, and spin as potentially significant affect-based foci for further study. Future efforts may also benefit from more expansive sentiment analysis approaches to more broadly test the practical application and theoretical capabilities of the circumplex model of affect on text-based data.
Assuntos
COVID-19 , Pandemias , Humanos , Saúde Mental , SARS-CoV-2 , Análise de Sentimentos , Estados Unidos/epidemiologiaRESUMO
Suicidal thought and behavior (STB) is highly stigmatized and taboo. Prone to censorship, yet pervasive online, STB risk detection may be improved through development of uniquely insightful digital markers. Focusing on Sanctioned Suicide, an online pro-choice suicide forum, this work derived 17 egocentric network features to capture dynamics of social interaction and engagement within this uniquely uncensored community. Using network data generated from over 3.2 million unique interactions of N = 192 individuals, n = 48 of which were determined to be highest risk users (HRUs), a machine learning classification model was trained, validated, and tested to predict HRU status. Model prediction dynamics were analyzed using introspection techniques to uncover patterns in feature influence and highlight social phenomena. The model achieved a test AUC = 0.73 ([0.61, 0.85], 95% CI), suggesting that network-based socio-behavioral patterns of online interaction can signal for heightened suicide risk. Transitivity, density, and in-degree centrality were among the most important features driving this performance. Moreover, predicted HRUs tended to be targets of social exchanges with lesser frequency and possessed egocentric networks with "small world" network properties. Through the implementation of an underutilized method on an unlikely data source, findings support future incorporation of network-based social interaction features in descriptive, predictive, and preventative STB research.
Assuntos
Aprendizado de Máquina , Interação Social , Suicídio , Humanos , Suicídio/psicologia , Suicídio/estatística & dados numéricos , Feminino , Masculino , Adulto , Ideação Suicida , Internet , Rede SocialRESUMO
Introduction: Existing theories and empirical works link phone use with anxiety; however, most leverage subjective self-reports of phone use (e.g., validated questionnaires) that may not correspond well with true behavior. Moreover, most works linking phone use with anxiety do not interrogate associations within a temporal framework. Accordingly, the present study sought to investigate the utility of passively sensed phone use as a longitudinal predictor of anxiety symptomatology within a population particularly vulnerable to experiencing anxiety. Methods: Using data from the GLOBEM study, which continuously collected longitudinal behavioral data from a college cohort of N = 330 students, weekly PHQ-4 anxiety subscale scores across 3 years (2019-2021) were paired with median daily phone use records from the 2 weeks prior to anxiety self-report completion. Phone use was operationalized through unlock duration which was passively curated via Apple's "Screen Time" feature. GPS-tracked location data was further utilized to specify whether an individual's phone use was at home or away from home. Within-individual and temporal associations between phone use and anxiety were modeled within an ordinal mixed-effects logistic regression framework. Results: While there was no significant association between anxiety levels and either median total phone use or median phone use at home, participants in the top quartile of median phone use away from home were predicted to exhibit clinically significant anxiety levels 20% more frequently than participants in the bottom quartile during the first study year; however, this association weakened across successive years. Importantly, these associations remained after controlling for age, physical activity, sleep, and baseline anxiety levels and were not recapitulated when operationalizing phone use with unlock frequency. Conclusions: These findings suggest that phone use may be leveraged as a means of mitigating or coping with anxiety in social situations outside the home, while pandemic-related developments may also have attenuated this behavior later in the study. Nevertheless, the present results suggest promise in interrogating a larger suite of objectively measured phone use behaviors within the context of social anxiety.
RESUMO
Depression and anxiety frequently co-occur with opioid use disorder (OUD) yet are often overlooked in standard OUD treatments. This study evaluated the feasibility, acceptability, and preliminary effectiveness of a mobile application designed to address these symptoms in individuals receiving medications for OUD (MOUD). A randomized controlled trial recruited N = 63 adults with OUD who received MOUD and screened positive for moderate depression or generalized anxiety. Participants were randomized to an app-based digital intervention or treatment-as-usual for 4 weeks, and completed follow-ups at 4 and 8 weeks. Primary outcomes were self-reported severity measures for depression and generalized anxiety, and urine drug screens (UDS). Secondary outcomes included self-reported OUD severity, craving intensity, and digital biomarkers derived from passive smartphone sensors. The application was well-received (median app rating = 4/5 stars). The intervention group showed significant reductions in depressive and generalized anxiety symptoms post-intervention and at 8 weeks follow-up (d > 0.70), with large (d = 0.78) and moderate (d = 0.38) effect sizes, respectively, compared to controls. Both groups exhibited substantial decreases in self-reported severity of opioid use symptoms (d > 2.50). UDS suggested similar between-group adherence to MOUD, with a marginal decrease in opioid (MOP) use in the intervention group and increase in controls, yielding medium between group effect sizes (d = 0.44). Passive sensor data suggested significant increases in social connectedness in the intervention group, evidenced by a significant rise in incoming and outgoing calls and text connections. Initial evidence supports the feasibility and acceptability of a digital intervention for treating anxiety and depressive symptoms in persons receiving MOUD. While underpowered to confidently determine statistical significance beyond directionality, the intervention showed promise in reducing depressive and anxiety symptoms, suggesting its potential as a cost-effective and scalable adjunctive therapy alongside standard OUD treatment. Due to the preliminary nature of this pilot study, further research with sample sizes permitting greater statistical power is needed to confirm findings and explore long-term effects.
RESUMO
There is an appreciable mental health treatment gap in the United States. Efforts to bridge this gap and improve resource accessibility have led to the provision of online, clinically-validated tools for mental health self-assessment. In theory, these screens serve as an invaluable component of information-seeking, representing the preparative and action-oriented stages of this process while altering or reinforcing the search content and language of individuals as they engage with information online. Accordingly, this work investigated the association of screen completion with mental health-related search behaviors. Three-year internet search histories from N=7,572 Microsoft Bing users were paired with their respective depression, anxiety, bipolar disorder, or psychosis online screen completion and sociodemographic data available through Mental Health America. Data was transformed into network representations to model queries as discrete steps with probabilities and times-to-transition from one search type to another. Search data subsequent to screen completion was also modeled using Markov chains to simulate likelihood trajectories of different search types through time. Differences in querying dynamics relative to screen completion were observed, with searches involving treatment, diagnosis, suicidal ideation, and suicidal intent commonly emerging as the highest probability behavioral information seeking endpoints. Moreover, results pointed to the association of low risk states of psychopathology with transitions to extreme clinical outcomes (i.e., active suicidal intent). Future research is required to draw definitive conclusions regarding causal relationships between screens and search behavior.
RESUMO
Major depressive disorder (MDD) is conceptualized by individual symptoms occurring most of the day for at least two weeks. Despite this operationalization, MDD is highly variable with persons showing greater variation within and across days. Moreover, MDD is highly heterogeneous, varying considerably across people in both function and form. Recent efforts have examined MDD heterogeneity byinvestigating how symptoms influence one another over time across individuals in a system; however, these efforts have assumed that symptom dynamics are static and do not dynamically change over time. Nevertheless, it is possible that individual MDD system dynamics change continuously across time. Participants (N = 105) completed ratings of MDD symptoms three times a day for 90 days, and we conducted time varying vector autoregressive models to investigate the idiographic symptom networks. We then illustrated this finding with a case series of five persons with MDD. Supporting prior research, results indicate there is high heterogeneity across persons as individual network composition is unique from person to person. In addition, for most persons, individual symptom networks change dramatically across the 90 days, as evidenced by 86% of individuals experiencing at least one change in their most influential symptom and the median number of shifts being 3 over the 90 days. Additionally, most individuals had at least one symptom that acted as both the most and least influential symptom at any given point over the 90-day period. Our findings offer further insight into short-term symptom dynamics, suggesting that MDD is heterogeneous both across and within persons over time. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico , Depressão , Projetos de PesquisaRESUMO
BACKGROUND: Major depressive disorder (MDD) and borderline personality disorder (BPD) often co-occur, with 20 % of adults with MDD meeting criteria for BPD. While MDD is typically diagnosed by symptoms persisting for several weeks, research suggests a dynamic pattern of symptom changes occurring over shorter durations. Given the diagnostic focus on affective states in MDD and BPD, with BPD characterized by instability, we expected heightened instability of MDD symptoms among depressed adults with BPD traits. The current study examined whether BPD symptoms predicted instability in depression symptoms, measured by ecological momentary assessments (EMAs). METHODS: The sample included 207 adults with MDD (76 % White, 82 % women) recruited from across the United States. At the start of the study, participants completed a battery of mental health screens including BPD severity and neuroticism. Participants completed EMAs tracking their depression symptoms three times a day over a 90-day period. RESULTS: Using self-report scores assessing borderline personality disorder (BPD) traits along with neuroticism scores and sociodemographic data, Bayesian and frequentist linear regression models consistently indicated that BPD severity was not associated with depression symptom change through time. LIMITATIONS: Diagnostic sensitivity and specificity may be restricted by use of a self-report screening tool for capturing BPD severity. Additionally, this clinical sample of depressed adults lacks a comparison group to determine whether subclinical depressive symptoms present differently among individuals with BPD only. CONCLUSIONS: The unexpected findings shed light on the interplay between these disorders, emphasizing the need for further research to understand their association.
Assuntos
Transtorno da Personalidade Borderline , Transtorno Depressivo Maior , Avaliação Momentânea Ecológica , Humanos , Transtorno da Personalidade Borderline/psicologia , Transtorno da Personalidade Borderline/epidemiologia , Transtorno da Personalidade Borderline/diagnóstico , Feminino , Transtorno Depressivo Maior/psicologia , Transtorno Depressivo Maior/epidemiologia , Adulto , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Neuroticismo , Autorrelato , Escalas de Graduação Psiquiátrica , Depressão/psicologia , Depressão/epidemiologia , Estudos Longitudinais , Teorema de Bayes , Índice de Gravidade de Doença , ComorbidadeRESUMO
MoodCapture presents a novel approach that assesses depression based on images automatically captured from the front-facing camera of smartphones as people go about their daily lives. We collect over 125,000 photos in the wild from N=177 participants diagnosed with major depressive disorder for 90 days. Images are captured naturalistically while participants respond to the PHQ-8 depression survey question: "I have felt down, depressed, or hopeless". Our analysis explores important image attributes, such as angle, dominant colors, location, objects, and lighting. We show that a random forest trained with face landmarks can classify samples as depressed or non-depressed and predict raw PHQ-8 scores effectively. Our post-hoc analysis provides several insights through an ablation study, feature importance analysis, and bias assessment. Importantly, we evaluate user concerns about using MoodCapture to detect depression based on sharing photos, providing critical insights into privacy concerns that inform the future design of in-the-wild image-based mental health assessment tools.
RESUMO
Anhedonia and depressed mood are two cardinal symptoms of major depressive disorder (MDD). Prior work has demonstrated that cannabis consumers often endorse anhedonia and depressed mood, which may contribute to greater cannabis use (CU) over time. However, it is unclear (1) how the unique influence of anhedonia and depressed mood affect CU and (2) how these symptoms predict CU over more proximal periods of time, including the next day or week (rather than proceeding weeks or months). The current study used data collected from ecological momentary assessment (EMA) in a sample with MDD (N = 55) and employed mixed effects models to detect and predict weekly and daily CU from anhedonia and depressed mood over 90 days. Results indicated that anhedonia and depressed mood were significantly associated with CU, yet varied at daily and weekly scales. Moreover, these associations varied in both strength and directionality. In weekly models, less anhedonia and greater depressed mood were associated with greater CU, and directionality of associations were reversed in the models looking at any CU (compared to none). Findings provide evidence that anhedonia and depressed mood demonstrate complex associations with CU and emphasize leveraging EMA-based studies to understand these associations with more fine-grained detail.
Assuntos
Afeto , Anedonia , Depressão , Transtorno Depressivo Maior , Avaliação Momentânea Ecológica , Humanos , Anedonia/fisiologia , Masculino , Feminino , Adulto , Transtorno Depressivo Maior/psicologia , Afeto/fisiologia , Depressão/psicologia , Pessoa de Meia-Idade , Adulto Jovem , Uso da Maconha/psicologiaRESUMO
Background: The socially unattractive and stigmatizing nature of suicidal thought and behavior (STB) makes it especially susceptible to censorship across most modern digital communication platforms. The ubiquitous integration of technology with day-to-day life has presented an invaluable opportunity to leverage unprecedented amounts of data to study STB, yet the complex etiologies and consequences of censorship for research within mainstream online communities render an incomplete picture of STB manifestation. Analyses targeting online written content of suicidal users in environments where fear of reproach is mitigated may provide novel insight into modern trends and signals of STB expression. Methods: Complete written content of N = 192 users, including n = 48 identified as potential suicide completers/highest-risk users (HRUs), on the pro-choice suicide forum, Sanctioned Suicide, was modeled using a combination of lexicon-based topic modeling (EMPATH) and exploratory network analysis techniques to characterize and highlight prominent aspects of censorship-free suicidal discourse. Results: Modeling of over 2 million tokens across 37,136 forum posts found higher frequency of positive emotion and optimism among HRUs, emphasis on methods seeking and sharing behaviors, prominence of previously undocumented jargon, and semantics related to loneliness and life adversity. Conclusion: This natural language processing (NLP)- and network-driven exposé of online STB subculture uncovered trends that deserve further attention within suicidology as they may be able to bolster detection, intervention, and prevention of suicidal outcomes and exposures.
RESUMO
Wearable technology enables unobtrusive collection of longitudinally dense data, allowing for continuous monitoring of physiology and behavior. These digital phenotypes, or device-based indicators, are frequently leveraged to study depression. However, they are usually considered alongside questionnaire sum-scores which collapse the symptomatic gamut into a general representation of severity. To explore the contributions of passive sensing streams more precisely, associations of nine passive sensing-derived features with self-report responses to Center for Epidemiologic Studies Depression (CES-D) items were modeled. Using data from the NetHealth study on N=469 college students, this work generated mixed ordinal logistic regression models to summarize contributions of pulse, movement, and sleep data to depression symptom detection. Emphasizing the importance of the college context, wearable features displayed unique and complementary properties in their heterogeneously significant associations with CES-D items. This work provides conceptual and exploratory blueprints for a reductionist approach to modeling depression within passive sensing research.
Assuntos
Depressão , Dispositivos Eletrônicos Vestíveis , Humanos , Depressão/diagnóstico , Inquéritos e Questionários , Autorrelato , FenótipoRESUMO
Mental health disorders are highly prevalent, yet few persons receive access to treatment; this is compounded in rural areas where mental health services are limited. The proliferation of online mental health screening tools are considered a key strategy to increase identification, diagnosis, and treatment of mental illness. However, research on real-world effectiveness, especially in hard to reach rural communities, is limited. Accordingly, the current work seeks to test the hypothesis that online screening use is greater in rural communities with limited mental health resources. The study utilized a national, online, population-based cohort consisting of Microsoft Bing search engine users across 18 months in the United States (representing approximately one-third of all internet searches), in conjunction with user-matched data of completed online mental health screens for anxiety, bipolar, depression, and psychosis (N = 4354) through Mental Health America, a leading non-profit mental health organization in the United States. Rank regression modeling was leveraged to characterize U.S. county-level screen completion rates as a function of rurality, health-care availability, and sociodemographic variables. County-level rurality and mental health care availability alone explained 42% of the variance in MHA screen completion rate (R2 = 0.42, p < 5.0 × 10-6). The results suggested that online screening was more prominent in underserved rural communities, therefore presenting as important tools with which to bridge mental health-care gaps in rural, resource-deficient areas.
Assuntos
Saúde Mental , População Rural , Humanos , Estados Unidos , Autorrelato , Inquéritos e Questionários , Acessibilidade aos Serviços de SaúdeRESUMO
INTRO: As smartphone usage becomes increasingly prevalent in the workplace, the physical and psychological implications of this behavior warrant consideration. Recent research has investigated associations between workplace smartphone use and fatigue and boredom, yet findings are not conclusive. METHODS: To build off recent efforts, we applied an ensemble machine learning model on a previously published dataset of N = 83 graduate students in the Netherlands to predict work boredom and fatigue from passively collected smartphone app use information. Using time-based feature engineering and lagged variations of the data to train, validate, and test idiographic models, we evaluated the efficacy of a lagged-ensemble predictive paradigm on sparse temporal data. Moreover, we probed the relative importance of both derived app use variables and lags within this predictive framework. RESULTS: The ability to predict fatigue and boredom trajectories from app use information was heterogeneous and highly person-specific. Idiographic modeling reflected moderate to high correlative capacity (r > 0.4) in 47% of participants for fatigue and 24% for boredom, with better overall performance in the fatigue prediction task. App use relating to duration, communication, and patterns of use frequency were among the most important features driving predictions across lags, with longer lags contributing more heavily to final ensemble predictions compared with shorter ones. CONCLUSION: A lag- specific ensemble predictive paradigm is a promising approach to leveraging high-dimensional app use behavioral data for the prediction of work fatigue and boredom. Future research will benefit from evaluating associations on densely collected data across longer time scales.
RESUMO
Social network analysis (SNA) is an increasingly popular and effective tool for modeling psychological phenomena. Through application to the personality literature, social networks, in conjunction with passive, non-invasive sensing technologies, have begun to offer powerful insight into personality state variability. Resultant constructions of social networks can be utilized alongside machine learning-based frameworks to uniquely model personality states. Accordingly, this work leverages data from a previously published study to combine passively collected wearable sensor information on face-to-face, workplace social interactions with ecological momentary assessments of personality state. Data from 54 individuals across six weeks was used to explore the relative importance of 26 unique structural and nodal social network features in predicting individual changes in each of the Big Five (5F) personality states. Changes in personality state were operationalized by calculating the weekly root mean square of successive differences (RMSSD) in 5F state scores measured daily via self-report. Using only SNA-derived features from wearable sensor data, boosted tree-based machine learning models explained, on average, approximately 28-30% of the variance in individual personality state change. Model introspection implicated egocentric features as the most influential predictors across 5F-specific models, with network efficiency, constraint, and effective size measures among the most important. Feature importance profiles for each 5F model partially echoed previous empirical findings. Results support future efforts focusing on egocentric components of SNA and suggest particular investment in exploring efficiency measures to model personality fluctuations within the workplace setting.
Assuntos
Transtornos da Personalidade , Estrutura Social , Humanos , Personalidade , Individualidade , Aprendizado de MáquinaRESUMO
INTRODUCTION: Most people with psychiatric illnesses do not receive treatment for almost a decade after disorder onset. Online mental health screens reflect one mechanism designed to shorten this lag in help-seeking, yet there has been limited research on the effectiveness of screening tools in naturalistic settings. MATERIAL AND METHODS: We examined a cohort of persons directed to a mental health screening tool via the Bing search engine (n = 126,060). We evaluated the impact of tool content on later searches for mental health self-references, self-diagnosis, care seeking, psychoactive medications, suicidal ideation, and suicidal intent. Website characteristics were evaluated by pairs of independent raters to ascertain screen type and content. These included the presence/absence of a suggestive diagnosis, a message on interpretability, as well as referrals to digital treatments, in-person treatments, and crisis services. RESULTS: Using machine learning models, the results suggested that screen content predicted later searches with mental health self-references (AUC = 0·73), mental health self-diagnosis (AUC = 0·69), mental health care seeking (AUC = 0·61), psychoactive medications (AUC = 0·55), suicidal ideation (AUC = 0·58), and suicidal intent (AUC = 0·60). Cox-proportional hazards models suggested individuals utilizing tools with in-person care referral were significantly more likely to subsequently search for methods to actively end their life (HR = 1·727, p = 0·007). DISCUSSION: Online screens may influence help-seeking behavior, suicidal ideation, and suicidal intent. Websites with referrals to in-person treatments could put persons at greater risk of active suicidal intent. Further evaluation using large-scale randomized controlled trials is needed.