Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(20): 207801, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36461998

RESUMO

We use vortex photon fields with orbital and spin angular momentum to probe chiral fluctuations within liquid crystals. In the regime of iridescence with a well-defined pitch length of chirality, we find low energy Raman scattering that can be decomposed into helical and chiral components depending on the scattering vector and the topological charge of the incident photon field. Based on the observation of an anomalous dispersion we attribute quasielastic scattering to a transfer of angular momenta to rotonlike quasiparticles. The latter are due to a competition of short-range repulsive and long-range dipolar interactions. Our approach using a transfer of orbital angular momentum opens up an avenue for the advanced characterization of chiral and optically active devices and materials.

2.
Phys Chem Chem Phys ; 21(20): 10667-10676, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31086863

RESUMO

Lead sulfide (PbS) colloidal quantum dots (QDs) are emerging materials for fundamental studies because of their potential application in near infrared (NIR) light harvesting technologies. However, inefficient electron separation, facile charge recombination and defect state trapping of photoexcited carriers are reported as limitations of the PbS QDs to achieve efficient energy conversion. In the present study, we have synthesized a triohybrid by assembling a semiconductor titanium dioxide (TiO2), an organic oxidizing molecule phenothiazine (PTZ) and PbS QDs. The triohybrid along with PbS_TiO2 and PbS_PTZ hybrids has been characterized and the attachment of different components is verified by spectroscopic and microscopic techniques. The interfacial dynamics of the photoexcited carriers in the PbS_TiO2 and PbS_PTZ hybrids have been investigated separately using steady state and time resolved photoluminescence (TRPL) measurements. The photoinduced electron transfer (PET) from the PbS QD to the conduction band (CB) of TiO2 and photoinduced hole transfer (PHT) from the valence band (VB) of the QD to the highest occupied molecular orbital (HOMO) of PTZ have been observed and correlated mechanistically to the energy level alignments obtained from cyclic voltammetric (CV) analysis. The PTZ molecule is also found to act as a surface defect passivator of the PbS QD. Finally, simultaneous exciton dissociation and reduced back recombination phenomena have been correlated with a higher reactive oxygen species (ROS) generation activity of the triohybrid than the other two, under IR light irradiation. Thus, a detailed investigation of carrier dynamics and the mechanism of higher NIR light activity for a novel nanohybrid is explored and analyzed which could be beneficial for NIR catalysis or antibacterial activities.

3.
Inorg Chem ; 57(15): 9115-9121, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29995399

RESUMO

The new CoBi2O2F4 compound was synthesized by a hydrothermal method at 230 °C. Single-crystal X-ray diffraction data were used to determine the crystal structure. The compound is layered and belongs to the Aurivillius family of compounds. The present compound is the first oxo-fluoride Aurivillius phase containing Co2+. Inclusion of a d-block cation with such a low oxidation state as 2+ was achieved by partially replacing O2- with F- ions. The crystal structure is best described in the tetragonal noncentrosymmetric space group I4̅ with unit-cell parameters a = 3.843(2) Å and c = 16.341(8) Å. The crystal structure consists of two main building units: [BiO4F4] distorted cubes and [CoF6] octahedra. Interestingly, since the octahedra [CoF6] tilt between four equivalent positions, the F atoms occupy a 4-fold split position at room temperature. For the investigation of the structural disorder, Raman scattering data were collected in the range from 10 K to room temperature. As the temperature decreases, sharper phonon peaks appear and several modes clearly appear, which indicates a reduction of the disorder. Magnetic susceptibility and heat capacity measurements evidence long-range antiferromagnetic ordering below the Néel temperature of ∼50 K. The magnetic susceptibility is in agreement with the Curie-Weiss law above 75 K with a Curie-Weiss temperature of θCW = -142(2) K.

4.
Inorg Chem ; 57(11): 6300-6308, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29767968

RESUMO

BaNa2Fe[VO4]2 contains a Jahn-Teller active ion (FeII, 3d6, high-spin) in an octahedral coordination. On the basis of a combination of temperature-dependent X-ray diffraction and Mössbauer and Raman spectroscopies, we demonstrate the coupling of lattice dynamics with the electronic ground state of FeII. We identify three lattice modes combined to an effective canted screw- type motion that drives the structural transition around room temperature from the high-temperature ( P3̅) via intermediate phases to the low-temperature phase ( C2/ c). The dynamics of the electronic ground state of Fe(II) are evident from Mössbauer data with signatures of a motion-narrowed doublet above 320 K, a gradual evolution of the 5Eg electronic state below 293 K, and finally the signature of the thermodynamically preferred orbitally nondegenerate ground state (5Ag) of Fe(II) below 100 K. The continuous nature of the transition is associated with the temperature-dependent phonon parameters derived from Raman spectroscopy, which point out the presence of strong electron-phonon coupling in this compound. We present a microscopic mechanism and evaluate the collective component leading to the structural phase transition.

5.
Inorg Chem ; 57(8): 4640-4648, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29613786

RESUMO

Single crystals of the new compound Cu2(SeO3)F2 were successfully synthesized via a hydrothermal method, and the crystal structure was determined from single-crystal X-ray diffraction data. The compound crystallizes in the orthorhombic space group Pnma with the unit cell parameters a = 7.066(4) Å, b = 9.590(4) Å, and c = 5.563(3) Å. Cu2(SeO3)F2 is isostructural with the previously described compounds Co2TeO3F2 and CoSeO3F2. The crystal structure comprises a framework of corner- and edge-sharing distorted [CuO3F3] octahedra, within which [SeO3] trigonal pyramids are present in voids and are connected to [CuO3F3] octahedra by corner sharing. The presence of a single local environment in both the 19F and 77Se solid-state MAS NMR spectra supports the hypothesis that O and F do not mix at the same crystallographic positions. Also the specific phonon modes observed with Raman scattering support the coordination around the cations. At high temperatures the magnetic susceptibility follows the Curie-Weiss law with Curie temperature of Θ = -173(2) K and an effective magnetic moment of µeff ∼ 2.2 µB. Antiferromagnetic ordering below ∼44 K is indicated by a peak in the magnetic susceptibility. A second though smaller peak at ∼16 K is tentatively ascribed to a magnetic reorientation transition. Both transitions are also confirmed by heat capacity measurements. Raman scattering experiments propose a structural phase instability in the temperature range 6-50 K based on phonon anomalies. Further changes in the Raman shift of modes at ∼46 K and ∼16 K arise from transitions of the magnetic lattice in accordance with the susceptibility and heat capacity measurements.

6.
Phys Chem Chem Phys ; 20(15): 10418-10429, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29611559

RESUMO

Co-sensitization to achieve a broad absorption window is a widely accepted technique in light harvesting nanohybrid synthesis. Protoporphyrin (PPIX) and squaraine (SQ2) are two organic sensitizers absorbing in the visible and NIR wavelength regions of the solar spectrum, respectively. In the present study, we have sensitized zinc oxide (ZnO) nanoparticles using PPIX and SQ2 simultaneously for their potential use in broad-band solar light harvesting in photocatalysis. Förster resonance energy transfer (FRET) from PPIX to SQ2 in close proximity to the ZnO surface has been found to enhance visible light photocatalysis. In order to confirm the effect of intermolecular FRET in photocatalysis, the excited state lifetime of the energy donor dye PPIX has been modulated by inserting d10 (ZnII) and d7 (CoII) metal ions in the central position of the dye (PP(Zn) and PP(Co)). In the case of PP(Co)-SQ2, extensive photo-induced ligand to metal charge transfer counteracts the FRET efficiency while efficient FRET has been observed for the PP(Zn)-SQ2 pair. This observation has been justified by the comparison of the visible light photocatalysis of the respective nanohybrids with several control studies. We have also investigated the NIR photocatalysis of the co-sensitized nanohybrids which reveals that reduced aggregation of SQ2 due to co-sensitization of PPIX increases the NIR photocatalysis. However, core-metalation of PPIX reduces the NIR photocatalytic efficacy, most probably due to excited state charge transfer from SQ2 to the metal centre of PP(Co)/PP(Zn) through the conduction band of the host ZnO nanoparticles.

7.
Phys Chem Chem Phys ; 19(3): 2503-2513, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28058420

RESUMO

The immense pharmacological relevance of the herbal medicine curcumin including anti-cancer and anti-Alzheimer effects, suggests it to be a superior alternative to synthesised drugs. The diverse functionalities with minimal side effects intensify the use of curcumin not only as a dietary supplement but also as a therapeutic agent. Besides all this effectiveness, some recent literature reported the presence of deleterious heavy metal contaminants from various sources in curcumin leading to potential health hazards. In this regard, we attempt to fabricate ZnO based nanoprobes to detect metal conjugated curcumin. We have synthesized and structurally characterized the ZnO nanorods (NR). Three samples namely curcumin (pure), Zn-curcumin (non-toxic metal attached to curcumin) and Hg-curcumin (toxic heavy metal attached to curcumin) were prepared for consideration. The samples were electrochemically deposited onto ZnO surfaces and the attachment was confirmed by cyclic voltammetry experiments. Moreover, to confirm a molecular level interaction picosecond-resolved PL-quenching of ZnO NR due to Förster Resonance Energy Transfer (FRET) from donor ZnO NR to the acceptor curcumin moieties was employed. The attachment proximity of ZnO NR and curcumin moieties depends on the size of metals. First principles analysis suggests a variance of attachment sites and heavy metal Hg conjugated curcumin binds through a peripheral hydroxy group to NR. We fabricated a facile photovoltaic device consisting of ZnO NR as the working electrode with Pt counter electrode and iodide-triiodide as the electrolyte. The trend in photocurrent under visible light illumination suggests an enhancement in the case of heavy metal ions due to long range interaction and greater accumulation of charge at the active electrode. Our results provide a detailed physical insight into interfacial processes that are crucial for detecting heavy-metal attached phytomedicines and are thus expected to find vast application as sensors for the detection of selective metal contaminants.


Assuntos
Metais Pesados/análise , Nanotubos/química , Compostos Fitoquímicos/química , Óxido de Zinco/química , Simulação por Computador , Curcumina/química , Técnicas Eletroquímicas , Eletrodos , Transferência Ressonante de Energia de Fluorescência , Luz , Metais Pesados/química , Análise Espectral
8.
Chembiochem ; 17(7): 605-13, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26914958

RESUMO

Although all forms of dynamical behaviour of a protein under allosteric interaction with effectors are predicted, little evidence of ultrafast dynamics in the interaction has been reported. Here, we demonstrate the efficacy of a combined approach involving picosecond-resolved FRET and polarisation-gated fluorescence for the exploration of ultrafast dynamics in the allosteric interaction of the Gal repressor (GalR) protein dimer with DNA operator sequences OE and OI . FRET from the single tryptophan residue to a covalently attached probe IAEDANS at a cysteine residue in the C-terminal domain of GalR shows structural perturbation and conformational dynamics during allosteric interaction. Polarisation-gated fluorescence spectroscopy of IAEDANS and another probe (FITC) covalently attached to the operator directly revealed the essential dynamics for cooperativity in the protein-protein interaction. The ultrafast resonance energy transfer from IAEDANS in the protein to FITC also revealed different dynamic flexibility in the allosteric interaction. An attempt was made to correlate the dynamic changes in the protein dimers with OE and OI with the consequent protein-protein interaction (tetramerisation) to form a DNA loop encompassing the promoter segment.


Assuntos
DNA/metabolismo , Proteínas de Escherichia coli/química , Conformação de Ácido Nucleico , Proteínas Repressoras/química , Regulação Alostérica , DNA/química , Imunoensaio de Fluorescência por Polarização , Transferência Ressonante de Energia de Fluorescência , Modelos Biológicos , Modelos Moleculares , Fatores de Tempo
9.
Chemphyschem ; 17(2): 270-7, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26563628

RESUMO

Drug sensitization with various inorganic nanoparticles (NPs) has proved to be a promising and an emergent concept in the field of nanomedicine. Rose bengal (RB), a notable photosensitizer, triggers the formation of reactive oxygen species under green-light irradiation, and consequently, it induces cytotoxicity and cell death. In the present study, the effect of photoinduced dynamics of RB upon complexation with semiconductor zinc oxide NPs is explored. To accomplish this, we successfully synthesized nanohybrids of RB with ZnO NPs with a particle size of 24 nm and optically characterized them. The uniform size and integrity of the particles were confirmed by high-resolution transmission electron microscopy. UV/Vis absorption and steady-state fluorescence studies reveal the formation of the nanohybrids. ultrafast picosecond-resolved fluorescence studies of RB-ZnO nanohybrids demonstrate an efficient electron transfer from the photoexcited drug to the semiconductor NPs. Picosecond-resolved Förster resonance energy transfer from ZnO NPs to RB unravel the proximity of the drug to the semiconductor at the molecular level. The photoinduced ROS formation was monitored using a dichlorofluorescin oxidation assay, which is a conventional oxidative stress indicator. It is observed that the ROS generation under green light illumination is greater at low concentrations of RB-ZnO nanohybrids compared with free RB. Substantial photodynamic activity of the nanohybrids in bacterial and fungal cell lines validated the in vitro toxicity results. Furthermore, the cytotoxic effect of the nanohybrids in HeLa cells, which was monitored by MTT assay, is also noteworthy.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Luz , Nanopartículas/química , Fármacos Fotossensibilizantes/farmacologia , Rosa Bengala/farmacologia , Óxido de Zinco/farmacologia , Antibacterianos/química , Antifúngicos/química , Antineoplásicos/química , Candida albicans/citologia , Candida albicans/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Processos Fotoquímicos , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo , Rosa Bengala/química , Semicondutores , Propriedades de Superfície , Óxido de Zinco/química
10.
Sci Technol Adv Mater ; 17(1): 375-386, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877889

RESUMO

Here, we report a facile approach, by the photochemical reduction technique, for in situ synthesis of Au-reduced graphene oxide (Au-RGO) nanohybrids, which demonstrate excellent adsorption capacities and recyclability for a broad range of dyes. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) data confirm the successful synthesis of Au-RGO nanohybrids. The effect of several experimental parameters (temperature and pH) variation can effectively control the dye adsorption capability. Furthermore, kinetic adsorption data reveal that the adsorption process follows a pseudo second-order model. The negative value of Gibbs free energy (ΔG0) confirms spontaneity while the positive enthalpy (ΔH0) indicates the endothermic nature of the adsorption process. Picosecond resolved fluorescence technique unravels the excited state dynamical processes of dye molecules adsorbed on the Au-RGO surface. Time resolved fluorescence quenching of Rh123 after adsorption on Au-RGO nanohybrids indicates efficient energy transfer from Rh123 to Au nanoparticles. A prototype device has been fabricated using Au-RGO nanohybrids on a syringe filter (pore size: 0.220 µm) and the experimental data indicate efficient removal of dyes from waste water with high recyclability. The application of this nanohybrid may lead to the development of an efficient reusable adsorbent in portable water purification.

11.
Chemistry ; 21(45): 16172-7, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26367136

RESUMO

The pathways of molecular recognition, which is a central event in all biological processes, belong to the most important subjects of contemporary research in biomolecular science. By using fluorescence spectroscopy in a microfluidics channel, it can be determined that molecular recognition of α-chymotrypsin in hydrous surroundings at two different pH values (3.6 and 6.3) follows two distinctly different pathways. Whereas one corroborates an induced-fit model (pH 3.6), the other one (pH 6.3) is consistent with the selected-fit model of biomolecular recognition. The role of massive structural perturbations of differential recognition pathways could be ruled out by earlier XRD studies, rather was consistent with the femtosecond-resolved observation of dynamic flexibility of the protein at different pH values. At low concentrations of ligands, the selected-fit model dominates, whereas increasing the ligand concentration leads to the induced-fit model. From molecular modelling and experimental results, the timescale associated with the conformational flexibility of the protein plays a key role in the selection of a pathway in biomolecular recognition.


Assuntos
Quimotripsina/química , Espectrometria de Fluorescência/métodos , Sítios de Ligação , Fenômenos Biológicos , Quimotripsina/análise , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica
12.
Phys Chem Chem Phys ; 17(1): 166-77, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25372615

RESUMO

In recent times, significant achievements in the use of zinc oxide (ZnO) nanoparticles (NPs) as delivery vehicles of cancer drugs have been made. The present study is an attempt to explore the key photoinduced dynamics in ZnO NPs upon complexation with a model cancer drug protoporphyrin IX (PP). The nanohybrid has been characterized by FTIR, Raman scattering and UV-Vis absorption spectroscopy. Picosecond-resolved Förster resonance energy transfer (FRET) from the defect mediated emission of ZnO NPs to PP has been used to study the formation of the nanohybrid at the molecular level. Picosecond-resolved fluorescence studies of PP-ZnO nanohybrids reveal efficient electron migration from photoexcited PP to ZnO, eventually enhancing the ROS activity. The dichlorofluorescin (DCFH) oxidation and no oxidation of luminol in PP/PP-ZnO nanohybrids upon green light illumination unravel that the nature of ROS is essentially singlet oxygen rather than superoxide anions. Surface mediated photocatalysis of methylene blue (MB) in an aqueous solution of the nanohybrid has also been investigated. Direct evidence of the role of electron transfer as a key player in enhanced ROS generation from the nanohybrid is also clear from the photocurrent measurement studies. We have also used the nanohybrid in a model photodynamic therapy application in a light sensitized bacteriological culture experiment.


Assuntos
Antibacterianos/administração & dosagem , Antineoplásicos/administração & dosagem , Nanopartículas/química , Protoporfirinas/administração & dosagem , Óxido de Zinco/química , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Transferência Ressonante de Energia de Fluorescência , Humanos , Luz , Modelos Moleculares , Nanopartículas/ultraestrutura , Neoplasias/tratamento farmacológico , Protoporfirinas/química , Protoporfirinas/farmacologia , Espécies Reativas de Oxigênio/química
13.
J Phys Chem A ; 119(18): 4162-9, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25871406

RESUMO

Riboflavin (Rf) is a class of important vitamins (Vitamin B2) and a well-known antioxidant. Here we have synthesized nanohybrids of Rf with a number of inorganic nanoparticles (NPs); namely zinc oxide (ZnO), titanium oxide (TiO2), aluminum oxide (Al2O3) and gold NPs of similar sizes. While high resolution transmission electron microscopy (HRTEM) confirms integrity and sizes of the NPs, intactness of the molecular structure of the drug Rf is revealed from absorption and steady-state emission spectra of the drug in the nanohybrid. Raman spectroscopy on the nanohybrids shows the nature of molecular complexation of the drug with the inorganic NPs. For the semiconductor and insulator NPs, the complexation is found to be noncovalent, however, a covalent attachment of the drug with the dangling bonds of metal atoms at the surface is observed. In order to investigate antioxidant activity of the nanohybrids, we have performed 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay of the nanohybrids in dark as well as under blue light irradiation. Whereas change of the antioxidant activity of the nanohybrids with respect to free riboflavin in the absence of light is observed to be insignificant, a drastic change in the activity in the case of TiO2 and ZnO in the presence of light is evident. No change in the case of Al2O3 and a significant decrease in the antioxidant activity for gold nanohybrids are also remarkable. Picosecond-resolved fluorescence studies on the nanohybrids reveal a molecular picture of the differential antioxidant activities. An ultrafast photoinduced electron transfer from Rf to ZnO and TiO2 are clearly evident from the corresponding fluorescence transients. We have compared the picosecond-resolved transients with that of Rf in the presence of a well-known electron acceptor benzoquinone (BQ) and found similar time scales. No temporal change in the fluorescence transient of riboflavin in Al2O3 nanohybrids compared to that of free Rf is observed indicating uneventful excited state relaxation of the nanohybrids. Nanosurface energy transfer (NSET) over Förster resonance energy transfer (FRET) is found to be the prevailing de-excitation mechanism in the case of gold nanohybrids, because of the strong spectral overlap between Rf emission and surface plasmon absorption of the gold NPs. Different excited state mechanisms as revealed from our studies are expected to be useful for the design of NP-sensitized drugs, which are reported sparsely in the literature.


Assuntos
Óxido de Alumínio/química , Ouro/química , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Riboflavina/química , Titânio/química , Óxido de Zinco/química , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Semicondutores , Propriedades de Superfície
14.
Inorg Chem ; 53(14): 7661-7, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24956023

RESUMO

The new oxofluoride Cu7(TeO3)6F2 has been synthesized by hydrothermal synthesis. It crystallizes in the triclinic system, space group P1. The crystal structure constitutes a Cu-O framework with channels extending along [001] where the F(-) ions and the stereochemically active lone-pairs on Te(4+) are located. From magnetic susceptibility, specific heat, and Raman scattering measurements we find evidence that the magnetic degrees of freedom of the Cu-O-Cu segments in Cu7(TeO3)6F2 lead to a mixed dimensionality with single Cu S = (1)/2 moments weakly coupled to spin-chain fragments. Due to the weaker coupling of the single moments, strong fluctuations exist at elevated temperatures, and long-range magnetic ordering evolves at comparably low temperatures (TN = 15 K).

15.
Nanotechnology ; 23(30): 305705, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22781743

RESUMO

Free-standing, bi-directionally permeable and ultra-thin anodic aluminum oxide (AAO) membranes establish attractive templates (host) for the synthesis of nano-dots and rods of various materials (guest). This is due to their chemical and structural integrity and high periodicity on length scales of 5-150 nm which are often used to host photoactive nano-materials for various device applications including dye-sensitized solar cells. In the present study, AAO membranes are synthesized by using electrochemical methods and a detailed structural characterization using FEG-SEM, XRD and TGA confirms the porosity and purity of the material. Defect-mediated photoluminescence quenching of the porous AAO membrane in the presence of an electron accepting guest organic molecule (benzoquinone) is studied by means of steady-state and picosecond/femtosecond-resolved luminescence measurements. Using time-resolved luminescence transients, we have also revealed light harvesting of complexes of porous alumina impregnated with inorganic quantum dots (Maple Red) or gold nanowires. Both the Förster resonance energy transfer and the nano-surface energy transfer techniques are employed to examine the observed quenching behavior as a function of the characteristic donor-acceptor distances. The experimental results will find their relevance in light harvesting devices based on AAOs combined with other materials involving a decisive energy/charge transfer dynamics.

16.
Environ Sci Pollut Res Int ; 29(54): 81938-81953, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35739451

RESUMO

In this study, an aqueous extract of Sclerocarya birrea leaves was used as a reducing agent to synthesize silver nanoparticles (AgNPs). The synthesis was carried out at room temperature and was both rapid and simple. Different characterization techniques such as UV/visible spectroscopy, surface-enhanced Raman spectroscopy, X-ray diffraction, and focused ion beam scanning electron microscopy were used to confirm the formation of AgNPs. The synthesized nanoparticles exhibited catalytic activity for the reduction of 4-nitrophenol, methyl orange, methylene blue, and rhodamine 6G. The catalytic activity was monitored by measuring the UV/visible absorbance spectra of the compounds using sodium borohydride as a reducing agent and found to be high. Additionally, the particles displayed oxidase-like activity. In the presence of AgNPs, 3, 3', 5, 5'-tetramethylbenzidine (TMB) which is colorless was transformed to oxidized TMB, which is blue, using dissolved oxygen as the oxidant. In the presence of Hg2+, the oxidase-like activity was enhanced. On the basis of this observation, an assay for the analysis of Hg2+ was developed. The linear range of the calibration curve is wide (0-600 µM) and the limit of detection (LOD) is low, as small as 34.8 nM. The method is strongly selective towards Hg2+. Tap water obtained from the laboratory where these experiments were carried out was used to study the feasibility of the method in real sample analyses.


Assuntos
Poluentes Ambientais , Mercúrio , Nanopartículas Metálicas , Prata/química , Nanopartículas Metálicas/química , Mercúrio/análise , Substâncias Redutoras , Azul de Metileno/química , Poluentes Ambientais/análise , Oxirredutases , Íons , Água/química , Difração de Raios X , Oxidantes , Oxigênio/análise , Extratos Vegetais/química
17.
Inorg Chem ; 50(24): 12877-85, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22077393

RESUMO

Two new isostructural layered oxohalides FeTe(3)O(7)X (X = Cl, Br) were synthesized by chemical vapor transport reactions, and their crystal structures and magnetic properties were characterized by single-crystal X-ray diffraction, Raman spectroscopy, magnetic susceptibility and magnetization measurements, and also by density functional theory (DFT) calculations of the electronic structure and the spin exchange parameters. FeTe(3)O(7)X crystallizes in the monoclinic space group P2(1)/c with the unit cell parameters a = 10.7938(5), b = 7.3586(4), c = 10.8714(6) Å, ß = 111.041(5)°, Z = 4 for FeTe(3)O(7)Cl, and a = 11.0339(10), b = 7.3643(10), c = 10.8892(10) Å, ß = 109.598(10)°, Z = 4 for FeTe(3)O(7)Br. Each compound has one unique Fe(3+) ion coordinating a distorted [FeO(5)] trigonal bipyramid. Two such groups share edges to form [Fe(2)O(8)] dimers that are isolated from each other by Te(4+) ions. The high-temperature magnetic properties of the compounds as well as spectroscopic investigations are consistent with an isolated antiferromagnetic spin dimer model with almost similar spin gaps of ~35 K for X = Cl and Br, respectively. However, deviations at low temperatures in the magnetic susceptibility and the magnetization data indicate that the dimers couple via an interdimer coupling. This interpretation is also supported by DFT calculations which indicate an interdimer exchange which amounts to 25% and 10% of the intradimer exchange for X = Cl and Br, respectively. The magnetic properties support the counterion character and a weak integration of halide ions into the covalent network similar to that in many other oxohalides.

18.
Chemphyschem ; 11(2): 389-93, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20024976

RESUMO

The effect of confinement and energy transfer on the dynamics of a molecular magnet, known as a model system to study quantum coherence, is investigated. For this purpose the well-known polyoxovanadate [V(15)As(6)O(42)(H(2)O)](6-) (V(15)) is incorporated into a protein (human serum albumin, HSA) cavity. Due to a huge overlap of the optical absorption spectrum of V(15) with the emission spectrum of a fluorescence center of HSA (containing a single tryptophan residue), energy transfer is induced and probed by steady-state and time-resolved fluorescence. The geometrical coordination and the distance of the confined V(15) to the tryptophan moiety of HSA are investigated at various temperatures. This effect is used as a local probe for the thermal denaturation of the protein at elevated temperatures.


Assuntos
Transferência de Energia , Ligação Proteica , Dobramento de Proteína , Albumina Sérica/química , Temperatura , Sítios de Ligação , Humanos , Magnetismo , Estrutura Molecular , Conformação Proteica , Espectrometria de Fluorescência , Termodinâmica
19.
Inorg Chem ; 49(20): 9683-8, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20857924

RESUMO

A new copper selenite chloride Cu(5)(SeO(3))(4)Cl(2) has been prepared by chemical vapor transport reactions. Its crystal structure was determined by single-crystal X-ray diffraction. The title compound crystallizes in the monoclinic space group P2(1)/c with the unit cell parameters a = 10.9104(8) Å, b = 8.3134(6) Å, c = 7.5490(6) Å, ß = 90.715(6)°, Z = 2, and R(1) = 0.0383. Bond valence sum calculations indicate that the cations have the oxidation state Cu(II) and Se(IV), respectively. Three crystallographic different copper atoms, having different coordination polyhedra, [CuO(5)], [CuO(6)], and [CuO(3)Cl(2)], are connected by corner and edge sharing to form a framework that can be described as metal-oxygen slabs connected by Cl atoms via edge sharing [CuO(3)Cl(2)] polyhedra. The two crystallographic different selenium atoms both have [SeO(3)E] coordination, where E is the 4s(2) lone pair on Se(IV); they are isolated from each other and do bond to the Cu-coordination polyhedra only. The magnetic properties of the Cu(2+) ions with effective spin S = 1/2 moments are dominated by antiferromagnetic interactions. For temperatures T < T(c) ∼45 K, Néel magnetic ordering is observed with small ferromagnetic canted moments. We attribute these to antisymmetric Dzyaloshinskii-Moriya (DM) spin exchange which is allowed by the low symmetry spin exchange paths along the distorted transition metal oxyhalide coordinations.

20.
J Fluoresc ; 20(1): 283-90, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19823921

RESUMO

The control of the spontaneous emission (SE) rate of dye molecules (4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM) and Coumarin 523 (C523)) embedded in the Porous Silicon (PS) matrix has been studied using picosecond resolved fluorescence decay and polarization studies. We have shown that the SE rates of the two organic dyes embedded in the PS matrix depend on the relative positions of the emission maxima of the dyes with respect to electronic band gap energy of the PS matrix. We have also explored that the electronic band gap of the host PS matrix can easily be tuned by partial oxidation of the PS and the nature of SE of the embedded dyes can be tuned accordingly. The demonstrated retardation or enhancement of the spontaneous photon emission may enable the application of fluorescent organic molecules in PS matrix in several quantum optical devices including the realization of single photon sources.


Assuntos
Corantes Fluorescentes/química , Compostos Orgânicos/química , Silício/química , Absorção , Cumarínicos/química , Elétrons , Transferência de Energia , Polarização de Fluorescência , Microscopia Eletrônica de Varredura , Porosidade , Piranos/química , Estirenos/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa