Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(10): e2305228121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38394215

RESUMO

We used nuclear genomic data and statistical models to evaluate the ecological and evolutionary processes shaping spatial variation in species richness in Calochortus (Liliaceae, 74 spp.). Calochortus occupies diverse habitats in the western United States and Mexico and has a center of diversity in the California Floristic Province, marked by multiple orogenies, winter rainfall, and highly divergent climates and substrates (including serpentine). We used sequences of 294 low-copy nuclear loci to produce a time-calibrated phylogeny, estimate historical biogeography, and test hypotheses regarding drivers of present-day spatial patterns in species number. Speciation and species coexistence require reproductive isolation and ecological divergence, so we examined the roles of chromosome number, environmental heterogeneity, and migration in shaping local species richness. Six major clades-inhabiting different geographic/climatic areas, and often marked by different base chromosome numbers (n = 6 to 10)-began diverging from each other ~10.3 Mya. As predicted, local species number increased significantly with local heterogeneity in chromosome number, elevation, soil characteristics, and serpentine presence. Species richness is greatest in the Transverse/Peninsular Ranges where clades with different chromosome numbers overlap, topographic complexity provides diverse conditions over short distances, and several physiographic provinces meet allowing immigration by several clades. Recently diverged sister-species pairs generally have peri-patric distributions, and maximum geographic overlap between species increases over the first million years since divergence, suggesting that chromosomal evolution, genetic divergence leading to gametic isolation or hybrid inviability/sterility, and/or ecological divergence over small spatial scales may permit species co-occurrence.


Assuntos
Evolução Biológica , Liliaceae , Filogenia , Ecossistema , Cromossomos , Especiação Genética
2.
Mol Biol Evol ; 40(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37494292

RESUMO

Though the phylogenetic signal of loci on sex chromosomes can differ from those on autosomes, chromosomal-level genome assemblies for nonvertebrates are still relatively scarce and conservation of chromosomal gene content across deep phylogenetic scales has therefore remained largely unexplored. We here assemble a uniquely large and diverse set of samples (17 anchored hybrid enrichment, 24 RNA-seq, and 70 whole-genome sequencing samples of variable depth) for the medically important assassin bugs (Reduvioidea). We assess the performance of genes based on multiple features (e.g., nucleotide vs. amino acid, nuclear vs. mitochondrial, and autosomal vs. X chromosomal) and employ different methods (concatenation and coalescence analyses) to reconstruct the unresolved phylogeny of this diverse (∼7,000 spp.) and old (>180 Ma) group. Our results show that genes on the X chromosome are more likely to have discordant phylogenies than those on autosomes. We find that the X chromosome conflict is driven by high gene substitution rates that impact the accuracy of phylogenetic inference. However, gene tree clustering showed strong conflict even after discounting variable third codon positions. Alternative topologies were not particularly enriched for sex chromosome loci, but spread across the genome. We conclude that binning genes to autosomal or sex chromosomes may result in a more accurate picture of the complex evolutionary history of a clade.


Assuntos
Reduviidae , Animais , Filogenia , Evolução Biológica , Genoma , Cromossomo X/genética
3.
Syst Biol ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527840

RESUMO

The Australian continent's size and isolation make it an ideal place for studying the accumulation and evolution of biodiversity. Long separated from the ancient supercontinent Gondwana, most of Australia's plants and animals are unique and endemic, including the continent's frogs. Australian frogs comprise a remarkable ecological and morphological diversity categorized into a small number of distantly related radiations. We present a phylogenomic hypothesis based on an exon-capture dataset that spans the main clades of Australian myobatrachoid, pelodryadid hyloid, and microhylid frogs. Our time-calibrated phylogenomic-scale phylogeny identifies great disparity in the relative ages of these groups which vary from Gondwanan relics to recent immigrants from Asia and include arguably the continent's oldest living vertebrate radiation. This age stratification provides insight into the colonization of⁠, and diversification on, the Australian continent through deep time, during periods of dramatic climatic and community changes. Contemporary Australian frog diversity highlights the adaptive capacity of anurans, particularly in response to heat and aridity, and explains why they are one of the continent's most visible faunas.

4.
Cladistics ; 40(1): 34-63, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919831

RESUMO

Chalcidoidea are mostly parasitoid wasps that include as many as 500 000 estimated species. Capturing phylogenetic signal from such a massive radiation can be daunting. Chalcidoidea is an excellent example of a hyperdiverse group that has remained recalcitrant to phylogenetic resolution. We combined 1007 exons obtained with Anchored Hybrid Enrichment with 1048 ultra-conserved elements (UCEs) for 433 taxa including all extant families, >95% of all subfamilies, and 356 genera chosen to represent the vast diversity of the superfamily. Going back and forth between the molecular results and our collective knowledge of morphology and biology, we detected bias in the analyses that was driven by the saturation of nucleotide data. Our final results are based on a concatenated analysis of the least saturated exons and UCE datasets (2054 loci, 284 106 sites). Our analyses support an expected sister relationship with Mymarommatoidea. Seven previously recognized families were not monophyletic, so support for a new classification is discussed. Natural history in some cases would appear to be more informative than morphology, as illustrated by the elucidation of a clade of plant gall associates and a clade of taxa with planidial first-instar larvae. The phylogeny suggests a transition from smaller soft-bodied wasps to larger and more heavily sclerotized wasps, with egg parasitism as potentially ancestral for the entire superfamily. Deep divergences in Chalcidoidea coincide with an increase in insect families in the fossil record, and an early shift to phytophagy corresponds with the beginning of the "Angiosperm Terrestrial Revolution". Our dating analyses suggest a middle Jurassic origin of 174 Ma (167.3-180.5 Ma) and a crown age of 162.2 Ma (153.9-169.8 Ma) for Chalcidoidea. During the Cretaceous, Chalcidoidea may have undergone a rapid radiation in southern Gondwana with subsequent dispersals to the Northern Hemisphere. This scenario is discussed with regard to knowledge about the host taxa of chalcid wasps, their fossil record and Earth's palaeogeographic history.


Assuntos
Parasitos , Vespas , Animais , Vespas/genética , Filogenia , Evolução Biológica
5.
Biol Lett ; 20(5): 20230448, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716586

RESUMO

Recent molecular taxonomic advancements have expanded our understanding of crocodylian diversity, revealing the existence of previously overlooked species, including the Congo dwarf crocodile (Osteolaemus osborni) in the central Congo Basin rainforests. This study explores the genomic divergence between O. osborni and its better-known relative, the true dwarf crocodile (Osteolaemus tetraspis), shedding light on their evolutionary history. Field research conducted in the northwestern Republic of the Congo uncovered a locality where both species coexist in sympatry/syntopy. Genomic analysis of sympatric individuals reveals a level of divergence comparable to that between ecologically similar South American dwarf caimans (Paleosuchus palpebrosus and Paleosuchus trigonatus), suggesting parallel speciation in the Afrotropics and Neotropics during the Middle to Late Miocene, 10-12 Ma. Comparison of the sympatric and allopatric dwarf crocodiles indicates no gene flow between the analysed sympatric individuals of O. osborni and O. tetraspis. However, a larger sample will be required to answer the question of whether or to what extent these species hybridize. This study emphasizes the need for further research on the biology and conservation status of the Congo dwarf crocodile, highlighting its significance in the unique biodiversity of the Congolian rainforests and thus its potential as a flagship species.


Assuntos
Jacarés e Crocodilos , Animais , Jacarés e Crocodilos/genética , Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/classificação , Congo , Simpatria , América do Sul , Filogenia , Especiação Genética
6.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34791374

RESUMO

Polyploid speciation has played an important role in evolutionary history across the tree of life, yet there remain large gaps in our understanding of how polyploid species form and persist. Although systematic studies have been conducted in numerous polyploid complexes, recent advances in sequencing technology have demonstrated that conclusions from data-limited studies may be spurious and misleading. The North American gray treefrog complex, consisting of the diploid Hyla chrysoscelis and the tetraploid H. versicolor, has long been used as a model system in a variety of biological fields, yet all taxonomic studies to date were conducted with only a few loci from nuclear and mitochondrial genomes. Here, we utilized anchored hybrid enrichment and high-throughput sequencing to capture hundreds of loci along with whole mitochondrial genomes to investigate the evolutionary history of this complex. We used several phylogenetic and population genetic methods, including coalescent simulations and testing of polyploid speciation models with approximate Bayesian computation, to determine that H. versicolor was most likely formed via autopolyploidization from a now extinct lineage of H. chrysoscelis. We also uncovered evidence of significant hybridization between diploids and tetraploids where they co-occur, and show that historical hybridization between these groups led to the re-formation of distinct polyploid lineages following the initial whole-genome duplication event. Our study indicates that a wide variety of methods and explicit model testing of polyploid histories can greatly facilitate efforts to uncover the evolutionary history of polyploid complexes.


Assuntos
Duplicação Gênica , Poliploidia , Animais , Anuros/genética , Teorema de Bayes , América do Norte , Filogenia
7.
Mol Ecol ; 32(17): 4863-4879, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37401503

RESUMO

After polyploid species are formed, interactions between diploid and polyploid lineages may generate additional diversity in novel cytotypes and phenotypes. In anurans, mate choice by acoustic communication is the primary method by which individuals identify their own species and assess suitable mates. As such, the evolution of acoustic signals is an important mechanism for contributing to reproductive isolation and diversification in this group. Here, we estimate the biogeographical history of the North American grey treefrog complex, consisting of the diploid Hyla chrysoscelis and the tetraploid Hyla versicolor, focusing specifically on the geographical origin of whole genome duplication and the expansion of lineages out of glacial refugia. We then test for lineage-specific differences in mating signals by applying comparative methods to a large acoustic data set collected over 52 years that includes >1500 individual frogs. Along with describing the overall biogeographical history and call diversity, we found evidence that the geographical origin of H. versicolor and the formation of the midwestern polyploid lineage are both associated with glacial limits, and that the southwestern polyploid lineage is associated with a shift in acoustic phenotype relative to the diploid lineage with which they share a mitochondrial lineage. In H. chrysoscelis, we see that acoustic signals are largely split by Eastern and Western lineages, but that northward expansion along either side of the Appalachian Mountains is associated with further acoustic diversification. Overall, results of this study provide substantial clarity on the evolution of grey treefrogs as it relates to their biogeography and acoustic communication.


Assuntos
Anuros , Poliploidia , Animais , Anuros/genética , Diploide , América do Norte , Região dos Apalaches
8.
Mol Phylogenet Evol ; 180: 107674, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36543275

RESUMO

A dated phylogenetic hypothesis on the evolutionary history of the extant taxa of the Western Palearctic lizards Anguis and Pseudopus is revised using genome-wide nuclear DNA and mitogenomes. We found overall concordance between nuclear and mitochondrial DNA phylogenies, with one significant exception - the Apennine A. veronensis. In mitochondrial DNA, this species forms a common clade with the earliest diverging lineage, the southern Balkan endemic A. cephallonica, while it clusters together with A. fragilis in nuclear DNA. The nuclear phylogeny conforms to the morphology, which is relatively similar between A. veronensis and A. fragilis. The most plausible explanation for the mitonuclear discordance is ancient mitochondrial capture from the Balkan ancestor of A. cephallonica to the Apennine population of the A. fragilis-veronensis ancestor. We hypothesize that this capture occurred only in a geographically restricted population. The dating of this presumed mitochondrial introgression and capture coincides with the Messinian event, when the Balkan and Apennine Peninsulas were presumably largely connected. The dated nuclear phylogenomic reconstruction estimated the divergence of A. cephallonica around 12 Mya, while the sister clade representing the A. fragilis species complex consisting of the sister species A. fragilis-A. veronensis and A. colchica-A. graeca further diversified around 7 Mya. The depth of nuclear divergence among the evolutionary lineages of Pseudopus (0.5-1.2 Mya) supports their subspecies status.


Assuntos
Evolução Biológica , Lagartos , Animais , Filogenia , Península Balcânica , DNA Mitocondrial/genética
9.
Mol Phylogenet Evol ; 181: 107714, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36708940

RESUMO

Anchored Hybrid Enrichment (AHE) is a tool for capturing orthologous regions of the nuclear genome shared in low or single copy across lineages. Despite the increasing number of studies using this method, its usefulness to estimate relationships at deeper taxonomic levels in plants has not been fully explored. Here we present a proof of concept about the performance of nuclear loci obtained with AHE to infer phylogenetic relationships and explore the use of gene sampling schemes to estimate divergence times in Asterales. We recovered low-copy nuclear loci using the AHE method from herbarium material and silica-preserved samples. Maximum likelihood, Bayesian inference, and coalescence approaches were used to reconstruct phylogenomic relationships. Dating analyses were conducted under a multispecies coalescent approach by jointly inferring species tree and divergence times with random gene sampling schemes and multiple calibrations. We recovered 403 low-copy nuclear loci for 63 species representing nine out of eleven families of Asterales. Phylogenetic hypotheses were congruent among the applied methods and previously published results. Analyses with concatenated datasets were strongly supported, but coalescence-based analyses showed low support for the phylogenetic position of families Argophyllaceae and Alseuosmiaceae. Estimated family ages were congruent among gene sampling schemes, with the mean age for Asterales around 130 Myr. Our study documents the usefulness of AHE for resolving phylogenetic relationships at deep phylogenetic levels in Asterales. Observed phylogenetic inconsistencies were possibly due to the non-inclusion of families Phellinceae and Pentaphragmataceae. Random gene sampling schemes produced consistent age estimates with coalescence and species tree relaxed clock approaches.


Assuntos
Magnoliopsida , Filogenia , Magnoliopsida/genética , Teorema de Bayes , Genoma , Núcleo Celular/genética
10.
Mol Phylogenet Evol ; 182: 107757, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36925090

RESUMO

The progressive aridification of the Australian continent from âˆ¼ 20 million years ago posed severe challenges for the persistence of its resident biota. A key question involves the role of refugial habitats - specifically, their ability to mediate the effects of habitat loss and fragmentation, and their potential to shape opportunities for allopatric speciation. With freshwater species, for example, the patchiness, or absence, of water will constrain distributions. However, aridity may not necessarily isolate populations if disjunct refugia experience frequent hydrological connections. To investigate this potential dichotomy, we explored the evolutionary history of the Chlamydogobius gobies (Gobiiformes: Gobiidae), an arid-adapted genus of six small, benthic fish species that exploit all types of waterbodies (i.e. desert springs, waterholes and bore-fed wetlands, coastal estuarine creeks and mangroves) across parts of central and northern Australia. We used Anchored Phylogenomics to generate a highly resolved phylogeny of the group from sequence data for 260 nuclear loci. Buttressed by companion allozyme and mtDNA datasets, our molecular findings infer the diversification of Chlamydogobius in arid Australia, and provide a phylogenetic structure that cannot be simply explained by invoking allopatric speciation events reflecting current geographic proximity. Our findings are generally consistent with the existing morphological delimitation of species, with one exception: at the shallowest nodes of phylogenetic reconstruction, the molecular data do not fully support the current dichotomous delineation of C. japalpa from C. eremius in Kati Thanda-Lake Eyre-associated waterbodies. Together these findings illustrate the ability of structural (hydrological) connections to generate patterns of connectivity and isolation for an ecologically moderate disperser in response to ongoing habitat aridification. Finally, we explore the implications of these results for the immediate management of threatened (C. gloveri) and critically endangered (C. micropterus, C. squamigenus) congeners.


Assuntos
Evolução Biológica , Perciformes , Animais , Filogenia , Austrália , Peixes/genética , Ecossistema , Perciformes/genética , DNA Mitocondrial/genética
11.
Syst Biol ; 71(6): 1504-1523, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-35708660

RESUMO

Contamination of a genetic sample with DNA from one or more nontarget species is a continuing concern of molecular phylogenetic studies, both Sanger sequencing studies and next-generation sequencing studies. We developed an automated pipeline for identifying and excluding likely cross-contaminated loci based on the detection of bimodal distributions of patristic distances across gene trees. When contamination occurs between samples within a data set, a comparison between a contaminated sample and its contaminant taxon will yield bimodal distributions with one peak close to zero patristic distance. This new method does not rely on a priori knowledge of taxon relatedness nor does it determine the causes(s) of the contamination. Exclusion of putatively contaminated loci from a data set generated for the insect family Cicadidae showed that these sequences were affecting some topological patterns and branch supports, although the effects were sometimes subtle, with some contamination-influenced relationships exhibiting strong bootstrap support. Long tip branches and outlier values for one anchored phylogenomic pipeline statistic (AvgNHomologs) were correlated with the presence of contamination. While the anchored hybrid enrichment markers used here, which target hemipteroid taxa, proved effective in resolving deep and shallow level Cicadidae relationships in aggregate, individual markers contained inadequate phylogenetic signal, in part probably due to short length. The cleaned data set, consisting of 429 loci, from 90 genera representing 44 of 56 current Cicadidae tribes, supported three of the four sampled Cicadidae subfamilies in concatenated-matrix maximum likelihood (ML) and multispecies coalescent-based species tree analyses, with the fourth subfamily weakly supported in the ML trees. No well-supported patterns from previous family-level Sanger sequencing studies of Cicadidae phylogeny were contradicted. One taxon (Aragualna plenalinea) did not fall with its current subfamily in the genetic tree, and this genus and its tribe Aragualnini is reclassified to Tibicininae following morphological re-examination. Only subtle differences were observed in trees after the removal of loci for which divergent base frequencies were detected. Greater success may be achieved by increased taxon sampling and developing a probe set targeting a more recent common ancestor and longer loci. Searches for contamination are an essential step in phylogenomic analyses of all kinds and our pipeline is an effective solution. [Auchenorrhyncha; base-composition bias; Cicadidae; Cicadoidea; Hemiptera; phylogenetic conflict.].


Assuntos
Hemípteros , Animais , Hemípteros/genética , Sequenciamento de Nucleotídeos em Larga Escala , Insetos/genética , Filogenia
12.
Am J Bot ; 110(7): e16164, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37014095

RESUMO

PREMISE: The phylogenetic relationships among the ca. 138 species of goldenrods (Solidago; Asteraceae) have been difficult to infer due to species richness, and shallow interspecific genetic divergences. This study aims to overcome these obstacles by combining extensive sampling of goldenrod herbarium specimens with the use of a custom Solidago hybrid-sequence capture probe set. METHODS: A set of tissues from herbarium samples comprising ca. 90% of Solidago species was assembled and DNA was extracted. A custom hybrid-sequence capture probe set was designed, and data from 854 nuclear regions were obtained and analyzed from 209 specimens. Maximum likelihood and coalescent approaches were used to estimate the genus phylogeny for 157 diploid samples. RESULTS: Although DNAs from older specimens were both more fragmented and produced fewer sequencing reads, there was no relationship between specimen age and our ability to obtain sufficient data at the target loci. The Solidago phylogeny was generally well-supported, with 88/155 (57%) nodes receiving ≥95% bootstrap support. Solidago was supported as monophyletic, with Chrysoma pauciflosculosa identified as sister. A clade comprising Solidago ericameriodes, Solidago odora, and Solidago chapmanii was identified as the earliest diverging Solidago lineage. The previously segregated genera Brintonia and Oligoneuron were identified as placed well within Solidago. These and other phylogenetic results were used to establish four subgenera and fifteen sections within the genus. CONCLUSIONS: The combination of expansive herbarium sampling and hybrid-sequence capture data allowed us to quickly and rigorously establish the evolutionary relationships within this difficult, species-rich group.


Assuntos
Asteraceae , Solidago , Filogenia , Solidago/genética , Diploide , Análise de Sequência de DNA
13.
PLoS Genet ; 16(5): e1008769, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32392206

RESUMO

Polyploidy has played an important role in evolution across the tree of life but it is still unclear how polyploid lineages may persist after their initial formation. While both common and well-studied in plants, polyploidy is rare in animals and generally less understood. The Australian burrowing frog genus Neobatrachus is comprised of six diploid and three polyploid species and offers a powerful animal polyploid model system. We generated exome-capture sequence data from 87 individuals representing all nine species of Neobatrachus to investigate species-level relationships, the origin and inheritance mode of polyploid species, and the population genomic effects of polyploidy on genus-wide demography. We describe rapid speciation of diploid Neobatrachus species and show that the three independently originated polyploid species have tetrasomic or mixed inheritance. We document higher genetic diversity in tetraploids, resulting from widespread gene flow between the tetraploids, asymmetric inter-ploidy gene flow directed from sympatric diploids to tetraploids, and isolation of diploid species from each other. We also constructed models of ecologically suitable areas for each species to investigate the impact of climate on differing ploidy levels. These models suggest substantial change in suitable areas compared to past climate, which correspond to population genomic estimates of demographic histories. We propose that Neobatrachus diploids may be suffering the early genomic impacts of climate-induced habitat loss, while tetraploids appear to be avoiding this fate, possibly due to widespread gene flow. Finally, we demonstrate that Neobatrachus is an attractive model to study the effects of ploidy on the evolution of adaptation in animals.


Assuntos
Anuros/classificação , Anuros/genética , Sequenciamento do Exoma/métodos , Poliploidia , Animais , Austrália , Ecossistema , Evolução Molecular , Fluxo Gênico , Especiação Genética , Filogenia , Simpatria
14.
Mol Phylogenet Evol ; 173: 107482, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35452841

RESUMO

The Killifishes (Cyprinodontiformes) are a diverse and well-known group of fishes that contains sixteen families inclusive of Anablepidae, Aphaniidae Aplocheilidae, Cubanichthyidae, Cyprinodontidae, Fluviphylacidae, Fundulidae, Goodeidae, Nothobranchiidae, Orestiidae, Pantanodontidae, Poeciliidae, Procatopodidae, Profundulidae, Rivulidae, and Valenciidae and more than 1,200 species that are globally distributed in tropical and temperate, freshwater and estuarine habitats. The evolutionary relationships among the families within the group, based on different molecular and morphological data sets, have remained uncertain. Therefore, the objective of this study was to use a targeted approach, anchored hybrid enrichment, to investigate the phylogenetic relationships among the families within the Cyprindontiformes. This study included more than 100 individuals, representing all sixteen families within the Cyprinodontiformes, including many recently diagnosed families. We recovered an average of 244 loci per individual. These data were submitted to phylogenetic analyses (RaxML and ASTRAL) and although we recovered many of the same relationships as in previous studies of the group, several novel sets of relationships for other families also were recovered. In addition, two well-established clades (Suborders Cyprinodontoidei and Aplocheilodei) were recovered as monophyletic and are in agreement with most previous studies. We also assessed the degree of gene tree discordance in our dataset to evaluate support for alternative topological hypotheses for interfamilial relationships within the Cyprinodontiformes using a variety of different analyses. The results from this study will provide a robust, historical framework needed to investigate a plethora of biogeographic, taxonomic, ecological, and physiological questions for this group of fishes.


Assuntos
Ciprinodontiformes , Fundulidae , Peixes Listrados , Animais , Evolução Biológica , Ciprinodontiformes/genética , Fundulidae/genética , Peixes Listrados/genética , Filogenia
15.
Syst Biol ; 70(1): 162-180, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32617587

RESUMO

Phylogenomic data from a rapidly increasing number of studies provide new evidence for resolving relationships in recently radiated clades, but they also pose new challenges for inferring evolutionary histories. Most existing methods for reconstructing phylogenetic hypotheses rely solely on algorithms that only consider incomplete lineage sorting (ILS) as a cause of intra- or intergenomic discordance. Here, we utilize a variety of methods, including those to infer phylogenetic networks, to account for both ILS and introgression as a cause for nuclear and cytoplasmic-nuclear discordance using phylogenomic data from the recently radiated flowering plant genus Polemonium (Polemoniaceae), an ecologically diverse genus in Western North America with known and suspected gene flow between species. We find evidence for widespread discordance among nuclear loci that can be explained by both ILS and reticulate evolution in the evolutionary history of Polemonium. Furthermore, the histories of organellar genomes show strong discordance with the inferred species tree from the nuclear genome. Discordance between the nuclear and plastid genome is not completely explained by ILS, and only one case of discordance is explained by detected introgression events. Our results suggest that multiple processes have been involved in the evolutionary history of Polemonium and that the plastid genome does not accurately reflect species relationships. We discuss several potential causes for this cytoplasmic-nuclear discordance, which emerging evidence suggests is more widespread across the Tree of Life than previously thought. [Cyto-nuclear discordance, genomic discordance, phylogenetic networks, plastid capture, Polemoniaceae, Polemonium, reticulations.].


Assuntos
Genomas de Plastídeos , Magnoliopsida , Fluxo Gênico , Genomas de Plastídeos/genética , Filogenia , Plastídeos/genética
16.
Syst Biol ; 70(1): 120-132, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32521014

RESUMO

Organismal interactions drive the accumulation of diversity by influencing species ranges, morphology, and behavior. Interactions vary from agonistic to cooperative and should result in predictable patterns in trait and range evolution. However, despite a conceptual understanding of these processes, they have been difficult to model, particularly on macroevolutionary timescales and across broad geographic spaces. Here, we investigate the influence of biotic interactions on trait evolution and community assembly in monitor lizards (Varanus). Monitors are an iconic radiation with a cosmopolitan distribution and the greatest size disparity of any living terrestrial vertebrate genus. Between the colossal Komodo dragon Varanus komodoensis and the smallest Australian dwarf goannas, Varanus length and mass vary by multiple orders of magnitude. To test the hypothesis that size variation in this genus was driven by character displacement, we extended existing phylogenetic comparative methods which consider lineage interactions to account for dynamic biogeographic history and apply these methods to Australian monitors and marsupial predators. Incorporating both exon-capture molecular and morphological data sets we use a combined evidence approach to estimate the relationships among living and extinct varaniform lizards. Our results suggest that communities of Australian Varanus show high functional diversity as a result of continent-wide interspecific competition among monitors but not with faunivorous marsupials. We demonstrate that patterns of trait evolution resulting from character displacement on continental scales are recoverable from comparative data and highlight that these macroevolutionary patterns may develop in parallel across widely distributed sympatric groups.[Character displacement; comparative methods; phylogenetics; trait evolution; Varanus.].


Assuntos
Lagartos , Animais , Austrália , Tamanho Corporal , Lagartos/genética , Fenótipo , Filogenia
17.
Syst Biol ; 70(3): 491-507, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33169797

RESUMO

The genomic revolution offers renewed hope of resolving rapid radiations in the Tree of Life. The development of the multispecies coalescent model and improved gene tree estimation methods can better accommodate gene tree heterogeneity caused by incomplete lineage sorting (ILS) and gene tree estimation error stemming from the short internal branches. However, the relative influence of these factors in species tree inference is not well understood. Using anchored hybrid enrichment, we generated a data set including 423 single-copy loci from 64 taxa representing 39 families to infer the species tree of the flowering plant order Malpighiales. This order includes 9 of the top 10 most unstable nodes in angiosperms, which have been hypothesized to arise from the rapid radiation during the Cretaceous. Here, we show that coalescent-based methods do not resolve the backbone of Malpighiales and concatenation methods yield inconsistent estimations, providing evidence that gene tree heterogeneity is high in this clade. Despite high levels of ILS and gene tree estimation error, our simulations demonstrate that these two factors alone are insufficient to explain the lack of resolution in this order. To explore this further, we examined triplet frequencies among empirical gene trees and discovered some of them deviated significantly from those attributed to ILS and estimation error, suggesting gene flow as an additional and previously unappreciated phenomenon promoting gene tree variation in Malpighiales. Finally, we applied a novel method to quantify the relative contribution of these three primary sources of gene tree heterogeneity and demonstrated that ILS, gene tree estimation error, and gene flow contributed to 10.0$\%$, 34.8$\%$, and 21.4$\%$ of the variation, respectively. Together, our results suggest that a perfect storm of factors likely influence this lack of resolution, and further indicate that recalcitrant phylogenetic relationships like the backbone of Malpighiales may be better represented as phylogenetic networks. Thus, reducing such groups solely to existing models that adhere strictly to bifurcating trees greatly oversimplifies reality, and obscures our ability to more clearly discern the process of evolution. [Coalescent; concatenation; flanking region; hybrid enrichment, introgression; phylogenomics; rapid radiation, triplet frequency.].


Assuntos
Magnoliopsida , Malpighiales , Fluxo Gênico , Genoma , Humanos , Magnoliopsida/genética , Filogenia
18.
Syst Biol ; 70(1): 49-66, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32359157

RESUMO

Molecular phylogenies have yielded strong support for many parts of the amphibian Tree of Life, but poor support for the resolution of deeper nodes, including relationships among families and orders. To clarify these relationships, we provide a phylogenomic perspective on amphibian relationships by developing a taxon-specific Anchored Hybrid Enrichment protocol targeting hundreds of conserved exons which are effective across the class. After obtaining data from 220 loci for 286 species (representing 94% of the families and 44% of the genera), we estimate a phylogeny for extant amphibians and identify gene tree-species tree conflict across the deepest branches of the amphibian phylogeny. We perform locus-by-locus genealogical interrogation of alternative topological hypotheses for amphibian monophyly, focusing on interordinal relationships. We find that phylogenetic signal deep in the amphibian phylogeny varies greatly across loci in a manner that is consistent with incomplete lineage sorting in the ancestral lineage of extant amphibians. Our results overwhelmingly support amphibian monophyly and a sister relationship between frogs and salamanders, consistent with the Batrachia hypothesis. Species tree analyses converge on a small set of topological hypotheses for the relationships among extant amphibian families. These results clarify several contentious portions of the amphibian Tree of Life, which in conjunction with a set of vetted fossil calibrations, support a surprisingly younger timescale for crown and ordinal amphibian diversification than previously reported. More broadly, our study provides insight into the sources, magnitudes, and heterogeneity of support across loci in phylogenomic data sets.[AIC; Amphibia; Batrachia; Phylogeny; gene tree-species tree discordance; genomics; information theory.].


Assuntos
Fósseis , Genômica , Animais , Anuros , Humanos , Filogenia
19.
BMC Genomics ; 22(1): 711, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600496

RESUMO

BACKGROUND: Species interactions can promote mating behavior divergence, particularly when these interactions are costly due to maladaptive hybridization. Selection against hybridization can indirectly cause evolution of reproductive isolation within species, a process termed cascade reinforcement. This process can drive incipient speciation by generating divergent selection pressures among populations that interact with different species assemblages. Theoretical and empirical studies indicate that divergent selection on gene expression networks has the potential to increase reproductive isolation among populations. After identifying candidate synaptic transmission genes derived from neurophysiological studies in anurans, we test for divergence of gene expression in a system undergoing cascade reinforcement, the Upland Chorus Frog (Pseudacris feriarum). RESULTS: Our analyses identified seven candidate synaptic transmission genes that have diverged between ancestral and reinforced populations of P. feriarum, including five that encode synaptic vesicle proteins. Our gene correlation network analyses revealed four genetic modules that have diverged between these populations, two possessing a significant concentration of neurotransmission enrichment terms: one for synaptic membrane components and the other for metabolism of the neurotransmitter nitric oxide. We also ascertained that a greater number of genes have diverged in expression by geography than by sex. Moreover, we found that more genes have diverged within females as compared to males between populations. Conversely, we observed no difference in the number of differentially-expressed genes within the ancestral compared to the reinforced population between the sexes. CONCLUSIONS: This work is consistent with the idea that divergent selection on mating behaviors via cascade reinforcement contributed to evolution of gene expression in P. feriarum. Although our study design does not allow us to fully rule out the influence of environment and demography, the fact that more genes diverged in females than males points to a role for cascade reinforcement. Our discoveries of divergent candidate genes and gene networks related to neurotransmission support the idea that neural mechanisms of acoustic mating behaviors have diverged between populations, and agree with previous neurophysiological studies in frogs. Increasing support for this hypothesis, however, will require additional experiments under common garden conditions. Our work points to the importance of future replicated and tissue-specific studies to elucidate the relative contribution of gene expression divergence to the evolution of reproductive isolation during incipient speciation.


Assuntos
Anuros , Comportamento Sexual Animal , Transmissão Sináptica/genética , Animais , Anuros/genética , Mapeamento Cromossômico , Feminino , Especiação Genética , Masculino , Seleção Genética
20.
Mol Phylogenet Evol ; 158: 107080, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33482381

RESUMO

Hyperdiverse animal groups raise intriguing questions regarding the factors that generate and maintain their diversity. The snapping shrimp genus Alpheus (with >300 described species) is a spectacularly diversified group of decapod crustaceans that serves as an exemplary system for addressing evolutionary questions regarding morphological adaptations, symbiosis, cryptic diversity and molecular divergence. A lack of information regarding evolutionary relationships among species has limited investigations into the mechanisms that drive the diversification of Alpheus. Previous phylogenetic studies of Alpheus have been restricted in scope, while molecular datasets used for phylogenetic reconstructions have been based solely on mitochondrial and a handful of nuclear markers. Here we use an anchored hybrid enrichment (AHE) approach to resolve phylogenetic relationships among species of Alpheus. The AHE method generated sequence data for 240 loci (>72,000 bp) for 65 terminal species that span the geographic, ecological and taxonomic diversity of Alpheus. Our resulting, well-supported phylogeny demonstrates a lack of monophyly for five out of seven morphologically defined species groups that have traditionally been used as a framework in Alpheus taxonomy. Our results also suggest that symbiotic associations with a variety of other animals have evolved independently in at least seven lineages in this genus. Our AHE phylogeny represents the most comprehensive phylogenetic treatment of Alpheus to date and will provide a useful evolutionary framework to further investigate questions, such as various modifications of the snapping claw and the role of habitat specialization and symbiosis in promoting speciation. Running head: PHYLOGENY OF THE SNAPPING SHRIMP GENUS ALPHEUS.


Assuntos
Decápodes/classificação , Animais , Teorema de Bayes , Decápodes/anatomia & histologia , Decápodes/genética , Ecossistema , Complexo IV da Cadeia de Transporte de Elétrons/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Evolução Molecular , Filogenia , Simbiose
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa