Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757419

RESUMO

A crossed beam velocity-map ion-imaging apparatus has been used to determine differential cross sections (DCSs) for the rotationally inelastic scattering of NO(A2Σ+, v = 0, j = 0.5) with CO2, as a function of both NO(A, v = 0, N') final state and the coincident final rotational energy of the CO2. The DCSs are dominated by forward-peaked scattering for all N', with significant rotational excitation of CO2, and a small backward scattered peak is also observed for all final N'. However, no rotational rainbow scattering is observed and there is no evidence for significant product rotational angular momentum polarization. New ab initio potential energy surface calculations at the PNO-CCSD(T)-F12b level of theory report strong attractive forces at long ranges with significant anisotropy relative to both NO and CO2. The absence of rotational rainbow scattering is consistent with removal of low-impact-parameter collisions via electronic quenching, in agreement with the literature quenching rates of NO(A) by CO2 and recent electronic structure calculations. We propose that high-impact-parameter collisions, that do not lead to quenching, experience strong anisotropic attractive forces that lead to significant rotational excitation in both NO and CO2, depolarizing product angular momentum while leading to forward and backward glory scattering.

2.
Phys Chem Chem Phys ; 24(11): 6525-6534, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35257129

RESUMO

A crossed molecular beam, velocity-map ion imaging apparatus has been used to determine differential cross sections (DCSs) and angle-resolved rotational angular momentum alignment moments for the state-resolved rotationally inelastic scattering of NO(A2Σ+, v = 0, j = 0.5 f1) with Kr at an average collision energy of 785 cm-1. The experimental results are compared to close-coupled quantum scattering (QS) calculations performed on a literature ab initio potential energy surface (J. Klos et al., J. Chem. Phys., 2008, 129, 244303). DCSs are very strongly forward scattered, with weaker side and backward scattered peaks becoming progressively more important at higher-N'. Good agreement is found between experimental and QS DCSs, indicating that the PES is an accurate reflection of the NO(A)-Kr interaction energies. Partial wave analysis of the QS DCSs isolates multiple scattering mechanisms contributing to the DCSs, including L-type rainbows and Fraunhofer diffraction. Measured alignment moments are not well described by a hard-shell kinematic apse scattering model, showing deviations in the forward scattering hemisphere that are in agreement with QS calculations and arise from attractive regions of the PES. These discrepancies emphasise that established scattering mechanisms for molecules such as NO with lighter noble gases cannot be extrapolated safely to heavier, more polarisable members of the series.

4.
Nat Chem ; 10(11): 1148-1153, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150722

RESUMO

Stereodynamic descriptions of molecular collisions concern the angular correlations that exist between vector properties of the motion of the participating species, including their velocities and rotational angular momenta. Measurements of vector correlations provide a unique view of the forces acting during collisions, and are a stringent test of electronic-structure calculations of molecular interactions. Here, we present direct measurement of the four-vector correlation between initial and final relative velocities and rotational angular momenta in a molecular collision. This property, which quantifies the extent to which a molecule retains a memory of its initial sense of rotation, or handedness, as a function of scattering angle, yields insight into the dynamics of a molecular collision. We report non-intuitive changes in the handedness for specific states and scattering angles, reproduced by classical and quantum scattering calculations. Comparison to calculations on different ab initio potential energy surfaces demonstrates this measurement's exquisite sensitivity to the underlying intermolecular forces.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa